1-DIMENSIONAL MOTION

Ch 2

Objectives

- Relate velocity and acceleration to motion
- Create and interpret position-time, velocity-time and acceleration-time graphs
- Perform calculations with displacement, velocity, and acceleration
- Solve problems involving objects in free fall

Velocity

Motion diagram

Average Velocity

Sketch a position vs time graph

Average Velocity

Average Velocity

Average $\bar{v} = \frac{\Delta x}{\Delta t}$ Calculate average velocity from t = 2 s to t = 6 s

1 2 3 4 5 6 7 8 910 t (s)

Instantaneous Velocity

• What is the velocity at exactly 9.5 s?

Instantaneous Velocity

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t}$$

• Tangent line

Velocity-time graph

• How far does the object travel from t = 2s to t = 6s?

Velocity-time graph

Velocity-time graph

• Displacement = area under curve

Acceleration

Motion diagram

Velocity?

Acceleration?

Acceleration

•Acceleration—change in velocity

 $\cdot \bar{a} = \frac{\Delta v}{\Delta t}$

Δt	
Type of v	Sign of a needed to:
+ V	Speed up:
	Slow down:
- V	Speed up:
	Slow down:

Positive vs Negative Acceleration

• Draw a sketch of v vs t and x vs t for positive acceleration

Positive vs Negative Acceleration

• Draw a sketch of v vs t and x vs t for negative acceleration

- A ball rolls up a slanted driveway. It starts at 2.50 m/s, slows down for 5.00 s, stops for an instant, then rolls back down at an increasing speed.
 - What is the sign of the ball's velocity and acceleration as it rolls up the driveway? Down?
 - •What is the magnitude of *a* as it rolls up the driveway? Down?
 - Draw a sketch of this v vs t graph.

Velocity vs time graph

- A car is traveling at 25 m/s and constantly decelerates for 50 seconds until it comes to a complete stop.
- Calculate the acceleration
- Draw a sketch of the v vs t graph

Velocity vs time graph

 Determine both the acceleration and displacement of the moving object described in the graph.

Acceleration and v vs t graph

- Average acceleration
- Instantaneous acceleration

26

Equations				
$v_f = v_i + at$				
$\Delta x = v_i t + \frac{1}{2} a t^2$				
$v_f^2 = v_i^2 + 2 a\Delta x$				
$\Delta x = \frac{1}{2}(v_i + v_f)t$				

Prob	lem set	up (g	ive	it a t	try)
------	---------	-------	-----	--------	------

27

- Knowns
- Unknowns
- Equations
- •Work
- Solution

Practice questions

• A jet lands on an aircraft carrier at 63 m/s. What is the acceleration if it stops in 2.0 s?

Practice questions

• A car initially traveling at 15.0 m/s accelerates at a constant rate of -2.00 m/s². If the car's final velocity is 10.0 m/s, how long was the period of acceleration?

Practice questions

• A car moves at 25 m/s and coasts up a hill with a uniform acceleration of -1.5 m/s².

•What is its displacement after 6.0 s?

•What is its displacement after 9.0 s?

Practice questions

• A plane starting at rest at one end of a runway undergoes a uniform acceleration of 4.8 m/s² for 15 s before takeoff.

•What is its speed at takeoff?

• How long must the runway be for the plane to be able to take off?

Practice questions

• A car starts at rest and speeds up with an acceleration of 3.5 m/s². How far will the car have gone when it is traveling at 25 m/s?

Practice questions

Alice is jogging at a velocity of 2.50 m/s. If she accelerates at a constant -0.10 m/s², how fast will she be jogging after 10.0 m?

Practice questions

• A car is traveling at 25.0 m/s when the driver sees a dog in the road. It takes the driver 0.90 s to react, then steps on the brakes and slows at 6.5 m/s². How far does the car go before it stops?

More practice questions

- A driver of a car traveling at 15.0 m/s applies the brakes, causing an acceleration of -2.0 m/s².
 - How long does it take the car to accelerate to a final speed of 10.0 m/s?
 - How far has the car moved during the breaking period?

More practice questions

• A car starts from rest and travels for 5.0 s with a unform acceleration of -1.5 m/s².

- •What is the final velocity of the car?
- How far does the car travel during this period?

Air Resistance

Free Fall

Acceleration due to gravity is constant
a = g = -9.80 m/s²
Moon Landing: hammer vs feather

More practice questions

- Jill hits a softball from a height of 0.80 m and gives it an initial velocity of 7.5 m/s straight up.
 - •How high will the ball go?
 - How long will it take the ball to reach maximum height?

More practice questions

- That crazy Bob doesn't look where he walks and topples right off the edge of the Grand Canyon.
 - If the canyon is 1200 m tall, how long will he be falling?
 - •What will be his impact speed?

More practice questions

• Penelope hits a volleyball upward so its initial velocity is 6.0 m/s. If the ball starts 2.0 m above the floor, how long will it be in the air before it strikes the floor?