1－DIMENSIONAL MOTION

Ch 2

Objectives

－Relate velocity and acceleration to \qquad motion
－Create and interpret position－time， \qquad velocity－time and acceleration－time graphs \qquad
－Perform calculations with displacement， velocity，and acceleration
－Solve problems involving objects in free fall

Velocity
－Motion diagram

Average Velocity
: Average $\bar{v}=\frac{\Delta x}{\Delta t}$

Sketch a position vs time graph

Average Velocity

- Calculate

POSITION VS TIME average v using equation. - How does calculated v relate to graph?
\qquad

Average Velocity

- Average $\bar{v}=\frac{\Delta x}{\Delta t}$

Calculate average velocity from $t=2 \mathrm{~s}$ to
$\mathrm{t}=6 \mathrm{~s}$

Instantaneous Velocity

- What is the velocity at exactly 9.5 s?

Instantaneous Velocity

- $v=\lim _{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}$
- Tangent line

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$12345678910 t(s)$
- Describe motion at A, B, C

Velocity-time graph

- How far does the object travel from

Velocity-time graph

- Use $\Delta v=\frac{\Delta x}{\Delta t}$
- Displacement = area under curve

Velocity-time graph
-Displacement = area under curve

\qquad
\qquad
$\underline{\longrightarrow}$
$\underline{\longrightarrow}$
\qquad
\qquad
\qquad

Acceleration

- Motion diagram \qquad

-Velocity?
-Acceleration?

Acceleration

\qquad

Acceleration

:Acceleration-change in velocity

- $\bar{a}=\frac{\Delta v}{\Delta t}$

Type of \boldsymbol{v}	Sign of a needed to:
$+v$	Speed up:
	Slow down:
$-v$	Speed up:
	Slow down:

Positive vs Negative Acceleration
-Draw a sketch of v vs t and x vs t for positive acceleration

Positive vs Negative Acceleration

- Draw a sketch of v vs t and x vs t for negative acceleration

- A ball rolls up a slanted driveway. It starts at $2.50 \mathrm{~m} / \mathrm{s}$, slows down for 5.00 s , stops for an instant, then rolls back down at an increasing speed.
-What is the sign of the ball's velocity and acceleration as it rolls up the driveway? Down?
-What is the magnitude of a as it rolls up the driveway? Down?
-Draw a sketch of this v vs t graph.

Velocity vs time graph

- A car is traveling at $25 \mathrm{~m} / \mathrm{s}$ and constantly decelerates for 50 seconds until it comes to a complete stop.
-Calculate the acceleration
- Draw a sketch of the v vs t graph
\qquad

Velocity vs time graph

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Velocity vs time graph

- Determine both the \qquad acceleration and displacement of the moving object described in the graph.
\qquad
\qquad
\qquad
\qquad
\qquad

Acceleration and v vs t graph

-Average acceleration

- Instantaneous acceleration

Motion equations with constant accel.

Equations

$v_{f}=v_{i}+a t$
$\Delta x=v_{i} t+\frac{1}{2} a t^{2}$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\Delta x=1 / 2\left(v_{i}+v_{f}\right) t$

Problem set up (give it a try)

- Knowns
-Unknowns
- Equations
-Work
- Solution

Practice questions

-A jet lands on an aircraft carrier at 63 m / s. What is the acceleration if it stops in 2.0 s?

Practice questions

- A car initially traveling at 15.0 m/s accelerates at a constant rate of -2.00 $\mathrm{m} / \mathrm{s}^{2}$. If the car's final velocity is 10.0 m / s, how long was the period of acceleration?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice questions

- A car moves at $25 \mathrm{~m} / \mathrm{s}$ and coasts up a hill with a uniform acceleration of $-1.5 \mathrm{~m} / \mathrm{s}^{2}$.
-What is its displacement after 6.0 s ?
-What is its displacement after 9.0 s?

Practice questions

- A plane starting at rest at one end of a runway undergoes a uniform acceleration of $4.8 \mathrm{~m} / \mathrm{s}^{2}$ for 15 s before takeoff.
-What is its speed at takeoff?
- How long must the runway be for the plane to be able to take off?

Practice questions

- A car starts at rest and speeds up with an acceleration of $3.5 \mathrm{~m} / \mathrm{s}^{2}$. How far will the car have gone when it is traveling at $25 \mathrm{~m} / \mathrm{s}$?

Practice questions

- Alice is jogging at a velocity of 2.50 m / s. If she accelerates at a constant $-0.10 \mathrm{~m} / \mathrm{s}^{2}$, how fast will she be jogging after 10.0 m ?
\qquad

Practice questions

- A car is traveling at $25.0 \mathrm{~m} / \mathrm{s}$ when the driver sees a dog in the road. It takes the driver 0.90 s to react, then steps on the brakes and slows at $6.5 \mathrm{~m} / \mathrm{s}^{2}$. How far does the car go before it stops?

More practice questions

- A driver of a car traveling at $15.0 \mathrm{~m} / \mathrm{s}$ applies the brakes, causing an acceleration of $-2.0 \mathrm{~m} / \mathrm{s}^{2}$.
- How long does it take the car to accelerate to a final speed of 10.0 m / s ?
- How far has the car moved during the breaking period?

More practice questions

- A car starts from rest and travels for
5.0 s with a unform acceleration of $-1.5 \mathrm{~m} / \mathrm{s}^{2}$.
-What is the final velocity of the car?
- How far does the car travel during this period?
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Free Fall

- Acceleration due to gravity is constant

$$
\mathrm{a}=\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

-Moon Landing: hammer vs feather

More practice questions

- Jill hits a softball from a height of 0.80 m and gives it an initial velocity of 7.5 m / s straight up.
-How high will the ball go?
-How long will it take the ball to reach maximum height?

More practice questions

-Penelope hits a volleyball upward so its initial velocity is $6.0 \mathrm{~m} / \mathrm{s}$. If the ball starts 2.0 m above the floor, how long will it be in the air before it strikes the floor?

