ATOMIC STRUCTURE

Ch 4

Objectives

- <u>Identify</u> three types of subatomic particles.
- Describe the structure of atoms.
- Explain what makes elements and isotopes different from each other.
- <u>Calculate</u> the atomic mass of an element.

Subatomic Particles

Particle	Charge	Mass (g)	Location
Electron (e ⁻)	-1	9.11 x 10 ⁻²⁸	Electron cloud
Proton (p)	+1	1.67 x 10 ⁻²⁴	Nucleus
Neutron (n)	0	1.67 x 10 ⁻²⁴	Nucleus

Atoms

- •Atomic number = number of protons
- Different # protons = different elements
- •In a neutral atom, protons = electrons
- Mass number = protons PLUS neutrons
- Mass number is <u>NOT</u> atomic mass
- You CANNOT find mass number on periodic table

Symbols

• Contain the symbol of the element, the mass number and the atomic number.

 $Superscript \mathop{\rightarrow}$

Mass number

Charge

Subscript \rightarrow

Atomic number

Element	p	<u>n</u>	<u>e</u> -	Atomic #	Mass #
Fe		30			
		16		15	
	82				207

Now write the symbols for each of these elements

Isotopes

- Isotope—atoms with same # protons (same element) but different # neutrons
- Behave similarly (neon isotopes behave like neon) because of protons and electrons
- ¹H = hydrogen, ²H = deuterium, ³H = tritium

Element	p	<u>n</u>	<u>e</u> -	Atomic #	Mass #
¹⁶ O					
¹⁸ O					
		12		12	
	12				26

lons

- Ion—atom with a charge
- Atoms gain or lose e- to become ions
 - Lose e- results in positive charge
 - Gain e results in negative charge
- Fluorine gains 1 e- to become fluoride ion
 - Written as F-, F-1, F1-
- Magnesium loses 2 e⁻ to become magnesium ion
 - Written as Mg²⁺, Mg⁺²

-			
-			
-			
-			
_			
_			
_			
_			
-			
-			
-			
_			
_			
_			
-			
-			
-			
_			

<u>Ion</u>	Charge	<u>p</u>	<u>n</u>	<u>e</u> -	Atomic	Mass
Cl-			19		<u>#</u>	<u>#</u>
Be ²⁺						9
		8		10		16
	+1		48		37	
	-3			10		14
Cr ³⁺			26			

11

Investigation

- Determine the average mass of one vegetable piece.
- · Show and label all calculations
- 1 paper per group

12

Challenge

• If I have a 500.00 g sample of vegetable matter, what mass should be corn? 1

Atomic Mass Unit (amu)

- $\frac{1}{10}$ 1 amu = $\frac{1}{12}$ carbon-12 atom
- •1 amu ~ 1 proton or 1 neutron
- But not exactly!

14

Average Atomic Mass Example

- If 90% of the people in this room have \$20 and 10% have \$0, what is the average amount each person has?
- Need to calculate weighted average
- ·\$20·(0.9) + \$0·(0.1)
 - •\$18

15

Average Atomic Mass Problem 1

 A silver coin is composed of 51.48% silver-107 (¹⁰⁷Ag) and 48.16% silver-109 (¹⁰⁹Ag). Calculate the average atomic mass.

Average Atomic Mass Problem 2

•Element X has two natural isotopes. ¹⁰X has a mass of 10.012 amu and an abundance of 19.91%. ¹¹X has a mass of 11.009 amu and an abundance of 80.09%. Calculate the average atomic mass of X.

17

Average Atomic Mass Problem 3

Oxygen has three naturally occurring isotopes. ¹⁶O has a relative abundance of 99.759%, ¹⁷O has an abundance of 0.037%, and ¹⁸O has an abundance of 0.204%. Calculate the atomic mass of oxygen.