ATOMIC STRUCTURE

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Objectives

- Identify three types of subatomic \qquad particles.
- Describe the structure of atoms. \qquad
- Explain what makes elements and isotopes different from each other. \qquad
-Calculate the atomic mass of an element. \qquad
\qquad
\qquad

$|$| Subatomic Particles | | | |
| :--- | :--- | :--- | :--- |
| Particle Charge Mass (g)
 Electron
 (e) -1 9.11×10^{-28}
 Electron
 cloud
 Proton
 (p) +1 1.67×10^{-24} Nucleus | | | |
| Neutron
 (n) | 0 | 1.67×10^{-24} | Nucleus |

Atoms
- Atomic number = number of protons
- Different \# protons = different
elements
- In a neutral atom, protons = electrons
- Mass number = protons PLUS
neutrons
- Mass number is NOT atomic mass
- You CANNOT find mass number on
periodic table

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\underline{\underline{\mathbf{e}}}$						
$\underline{\text { Element }}$	$\underline{\mathbf{n}}$	$\underline{\underline{a}}$	$\underline{\text { Atomic \# }}$	$\underline{\text { Mass \# }}$		
Fe		30				
		16		15		
	82				207	

Now write the symbols for each of these elements

Isotopes
- Isotope-atoms with same \# protons
(same element) but different \#
neutrons
-Behave similarly (neon isotopes
behave like neon) because of protons
and electrons
$.^{1} \mathrm{H}=$ hydrogen, ${ }^{2} \mathrm{H}=$ deuterium,
${ }^{3} \mathrm{H}=$ tritium

\qquad

$\underline{\text { Element }}$ \mathbf{p} $\underline{\mathbf{n}}$ $\underline{\mathbf{e}}^{-}$ $\underline{\text { Atomic \# }}$ $\underline{\text { Mass \# }}$ ${ }^{16} \mathrm{O}$ ${ }^{18} \mathrm{O}$					
		12		12	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ions

- Ion-atom with a charge \qquad
- Atoms gain or lose e^{-}to become ions
- Lose e- results in positive charge
\qquad
- Gain e- results in negative charge
- Fluorine gains $1 e^{-}$to become fluoride ion
\qquad - Written as $\mathrm{F}^{-}, \mathrm{F}^{-1}, \mathrm{~F}^{1-}$
- Magnesium loses $2 e^{-}$to become magnesium ion
- Written as $\mathrm{Mg}^{2+}, \mathrm{Mg}^{+2}$

$\underline{\text { Ion }}$	$\underline{\text { Charge }}$	\mathbf{p}	$\underline{\mathbf{n}}$	$\underline{\mathbf{e}}$	$\frac{\text { Atomic }}{\#}$	$\frac{\text { Mass }}{\#}$
Cl^{-}			19			
Be^{2+}						9
		8		10		16
	+1		48		37	
	-3			10		14
Cr^{3+}			26			

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Challenge
- If I have a 500.00 g sample of vegetable
matter, what mass should be corn?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Average Atomic Mass Example
\qquad
-If 90% of the people in this room have
\qquad $\$ 20$ and 10% have $\$ 0$, what is the average amount each person has?

- Need to calculate weighted average \qquad
-\$20•(0.9) + \$0•(0.1)
-\$18
\qquad
\qquad
\qquad

Average Atomic Mass Problem 1

- A silver coin is composed of 51.48%
\qquad silver-107 (${ }^{107} \mathrm{Ag}$) and 48.16% silver- \qquad $109\left({ }^{109} \mathrm{Ag}\right)$. Calculate the average atomic mass.

\qquad

Average Atomic Mass Problem 3
- Oxygen has three naturally occurring
isotopes. ${ }^{16} \mathrm{O}$ has a relative
abundance of $99.759 \%,^{17} \mathrm{O}$ has an
abundance of 0.037%, and ${ }^{18} \mathrm{O}$ has an
abundance of 0.204%. Calculate the
atomic mass of oxygen.

