- 1. What is the atomic number?
- 2. What is the mass number?
- 3. Describe the location, charge, and relative mass of protons, neutrons and electrons in the modern electron cloud model of the atom. Draw a diagram including all of this information.
- 4. Discuss how most of an atom is empty space.
- 5. Define isotope.
- 6. Four elements are described below:

Element	# of protons	# of neutrons	# of electrons
А	5	6	2
В	1	1	1
С	1	0	0
D	5	5	5

- A) Which elements are isotopes of each other? (2 pairs)
- B) How will elements A and D compare in terms of chemical/physical properties?
- C) How will elements A and D compare in terms of atomic mass?
- D) How will elements B and C compare in terms of charge?
- E) Draw atomic symbols for all four elements.

7. Fill in the chart:

Isotone	# of	# of	# of
	protons	neutrons	electrons
⁵⁷ 26Fe			
²⁴ ₁₂ Mg ⁺²			
¹⁴ 6C			
¹² 6С			
235 92 U			
³⁵ 17 ⁻¹			
	33		36
	64	92	

8. Boron has two naturally occurring isotopes, ¹⁰B and ¹¹B. The percent abundance and atomic mass of each is given below. Using this data, determine the atomic mass of boron.

<u>lsotope</u>	<u>Percent Abundance</u>	<u>Atomic Mass</u>
Boron-10	19.78 %	10.013 amu
Boron-11	80.22 %	11.009 amu

9. Neon has three naturally occurring isotopes: ²⁰Ne has a mass of 19.992 amu and an abundance of 90.48%, ²¹Ne has a mass of 20.994 amu and an abundance of 0.27%, and ²²Ne has a mass of 21.991 amu and an abundance of 9.25%. Calculate the average atomic mass of neon.

- 10. Write the symbol for the species with 17 protons, 19 neutrons, and 18 electrons.
- 11. Write the symbol for the species with 3 protons, 3 neutrons, and 2 electrons.
- 12. Use the quantum mechanical model to explain how electrons move about the nucleus.
- 13. How many electrons can a single atomic orbital hold? How many orbitals can be found in an s sublevel? p? d? f?
- 14. "s" sublevels can hold a total of _____ electrons. p sublevels can hold _____ electrons, while d sublevels can hold _____, and f sublevels can hold _____ electrons.
- 15. Which is bigger, the 3s sublevel or the 5s sublevel? How many electrons can each hold?
- 16. List the three rules for electron configurations.
- 17. Give electron configurations (longhand) for: Fe, Br, Ar, He, U, Ag, K, Ne.
- 18. Give shorthand electron configurations for: In, I, Rb, Au, Cu,
- 19. $1s^22s^22p^63s^23p^4$ is the electron configuration for which element?
- 20. $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$ is the electron configuration for which noble gas?
- 21. Complete this chart of scientists:

Scientist	Discovery/Theory	How did this change how people thought the atom looked?
Dalton		
Thomson		
Rutherford		
Bohr		
Schrödinger		
Chadwick		

- 22. Sodium-24 undergoes beta radiation. Its half-life is 15 hours.
 - a. Write the equation for the beta decay of sodium-24.
 - b. If you start with 68.5 g of sodium-24, how much will be left after 90. hours?
- 23. ²³⁵U undergoes alpha radiation.
 - a. Write the equation for the alpha decay of uranium-235.
 - b. What is the half-life of uranium-235 if a 875 g sample decays to 27.3 g in 3.52x10⁹ years?
- 24. Carbon-11 decays by positron emission.
 - a. Write the nuclear chemistry equation.
 - b. The half-life of carbon-11 is approximately 20 minutes. How long will it take a 46 g sample of carbon-11 to 2.9 g?
- 25. Ruthenium-97 undergoes electron capture.
 - a. Write the equation.
 - b. The half-life of ruthenium-97 is 2.84 days. If there are 25.0 g of the sample left after 17.0 days, how many grams were in the original sample?
- 26. Iridium-192 undergoes beta and gamma decay. Write the equation.