Balancing Chemical

Equations

Chapter 11

Obiectives

- Balance chemical equations
- Write and balance chemical equations using word sentence.
- VA SOLs: 3a, 3b
\qquad

Vocab to know:

```
Reactants
- Products
- Catalyst
- Skeleton eqn
- Balanced eqn
- Coefficients
- Chemical eqn
```

\qquad

Symbols

- An arrow separates reactants from products \qquad
- Read as "reacts to form" or "yields"
- "And" = +
- Solid $=(\mathrm{s})$ after formula $\mathrm{AgCl}(\mathrm{s})$
- Liquid $=(\mathrm{I})$ after formula $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
\qquad
- Gas = (g) $\mathrm{CO}_{2}(\mathrm{~g})$
- Aqueous (dissolved in $\left.\mathrm{H}_{2} \mathrm{O}\right)=(\mathrm{aq}) \quad \mathrm{NaCl}(\mathrm{aq})$
\qquad
\qquad
\qquad

Symbols (cont)

\leftrightarrow O reversible rxn (also seen as \rightleftarrows) \qquad
$\stackrel{\Delta}{\Delta}, \xrightarrow{\text { heat }}$ heat supplied to rxn
$\xrightarrow{\mathrm{Pt}}$ indicates catalyst used

- Catalyst = substance that speeds up rxn without being changed or used up

Balancing Eqns

- Balanced eqns have same number of \qquad each element on BOTH sides of eqn
- Use Law of Conservation of Mass
- Atoms/mass cannot be created or destroyed
- Must end up with all the atoms you started with

Balancing Eqns (cont)

- Always use lowest whole-number ratios \qquad
- $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ NOT $4 \mathrm{H}_{2}+2 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}$

NEVER

NEVER change subscript to balance \qquad

- Changing formula creates a different rxn
- $\mathrm{H}_{2} \mathrm{O}$ is completely different from $\mathrm{H}_{2} \mathrm{O}_{2}$
- NEVER put coefficient in middle of cmpd
- 2 NaCl OK Na 2 Cl NOT OK
\qquad
\qquad
\qquad
\qquad
\qquad

Practice

- Balance these eqns: \qquad
- $\quad \mathrm{P}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{P}_{4} \mathrm{O}_{10}$
- $4 \mathrm{P}+5 \mathrm{O}_{2} \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}$
. $\quad \mathrm{Mg}+\ldots \mathrm{N}_{2} \rightarrow \ldots \mathrm{Mg}_{3} \mathrm{~N}_{2}$
- $3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$
- $\quad \mathrm{Al}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
- $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
\qquad
\qquad
\qquad

More Practice

- $\quad \mathrm{AgNO}_{3}+\ldots \mathrm{Cu} \rightarrow \ldots \mathrm{Ag}+\ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
- __Na $+\ldots \mathrm{H}(\mathrm{OH}) \rightarrow _\mathrm{H}_{2}+\ldots \mathrm{NaOH}$
- $\mathrm{CH}_{4}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
- $\mathrm{NaOH}+_\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow-\mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NaNO}_{3}$ \qquad
- _ $\mathrm{HgO} \rightarrow \ldots \mathrm{Hg}+\ldots \mathrm{O}_{2}$
\qquad
\qquad
\qquad

More Practice

\qquad
$-2 \mathrm{AgNO}_{3}+\mathrm{Cu} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad
\qquad

- $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- $3 \mathrm{NaOH}+\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+3 \mathrm{NaNO}_{3}$ \qquad
$-2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}$

Word Problems

- Write formulas then balance. \qquad
- Aluminum reacts with oxygen to produce aluminum oxide. \qquad
- $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
- Solid copper reacts with aqueous silver nitrate to produce solid silver and aqueous copper (II) nitrate \qquad
$-\mathrm{Cu}(s)+2 \mathrm{AgNO}_{3}(a q) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+$ 2Ag (s)

