


### **Objectives**

- Draw Lewis dot structures to satisfy octet rule
- Understand VSEPR as it applies to molecular shapes
- Identify a molec as polar or nonpolar
   Determine IMF for molecules



F<sub>2</sub> Diatomic Man

# Covalent Bonding

- Molecular compounds
- Properties of molecules with covalent bonds:
  - Lower melting and boiling point than ionic compounds
    - Can be liquids or gases at room temperature
      Sometimes can be solids
  - Molecules attracted to each other as strongly so it takes less heat to melt or boil

#### • Atoms share electrons to satisfy octet rule

Lewis dot structures:

- Use only valence electrons
- Share to get 8 electrons
- Exceptions: B likes 6 e<sup>-</sup>, H and He happy with 2 e<sup>-</sup>

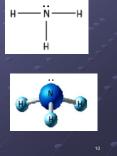
### Lewis structures for molecules

- 1. Count the number of total valence electrons in molecule
- 2. Determine # electron pairs
- 3. Write the atoms in the order they'll go Atom with lowest IE in center
  - b. H never in center
- 4. Make a bond (2  $e^{-}$ ) between each atom
- 5. Complete octet with more bonds or lone pairs of e<sup>-</sup>

Practice

- Water
- Hydrofluoric acid (HF)
- Ammonia (NH<sub>3</sub>)
- Methane (CH<sub>4</sub>)
- Hydrosulfuric acid
- $(H_2S)$
- Chloroform
- (CHCl<sub>3</sub>)
- Boron trifluoride

#### Double/Triple


- Oxygen (O<sub>2</sub>)
- Hydrogen cyanide (HCN)
- Carbon dioxide

Not double/triple, just a little more complicated

- Methanol (CH<sub>3</sub>OH)
- C<sub>2</sub>H<sub>6</sub>

## Molecular Shapes

- VSEPR—Valence Shell Electron Pair Repulsion
  - Electrons want to get as far away from each other as possible
  - Electron pairs (lone pairs) take up more room than a bond



|   | Molecule         | # Atoms<br>bonded to<br>central<br>atom | # Lone<br>pairs (not<br>bonded) | Molecular<br>shape |    |
|---|------------------|-----------------------------------------|---------------------------------|--------------------|----|
|   | CO <sub>2</sub>  | 2                                       | 0                               | Linear             |    |
| 3 | BF <sub>3</sub>  | 3                                       | 0                               | Trigonal<br>planar | I  |
|   | CH <sub>4</sub>  | 4                                       | 0                               | Tetrahedral        | 9  |
|   | H <sub>2</sub> O | 2                                       | 2                               | Bent               | 2  |
|   | O <sub>3</sub>   | 2                                       | 1                               | Bent               |    |
| R | NH <sub>3</sub>  | 3                                       | 1                               | Pyramidal          |    |
|   |                  | 19                                      |                                 | f f                | 11 |

#### What are the shapes of:

- Oxygen difluoride
- Hydrobromic acid (HBr)
- Boron trichloride
- Carbon tetrabromide

- Use dot structures and model kits to determine the shapes of:
  - 1. Nitrogen
  - 2. Hydrophosphoric acid, H<sub>3</sub>P

  - Hydrogen cyanide
     Hydrobromic <u>acid</u>,
  - HBr
  - 5. Boron trifluoride

- Silicon dioxide
- Ammonia (NH<sub>3</sub>)
- Methane ( $CH_4$ )
- Hydrosulfuric acid,
- H<sub>2</sub>S
  - tetrachloride
- 11. Chloroform (CHCl<sub>3</sub>)
- 12. H<sub>2</sub>CO

- Use dot structures and model kits to determine the shapes of:
  - 1. Nitrogen
  - 2. Hydrophosphoric
  - acid, H<sub>3</sub>P
  - 3. Hydrogen cyanide
  - 4. Hydrobromic acid, HBr
  - 5. Boron trifluoride

- 6. Silicon dioxide
- 7. Ammonia (NH<sub>3</sub>)
- Methane (CH<sub>4</sub>)
- Hydrosulfuric acid, H<sub>2</sub>S \_\_\_\_\_
- 10. Carbon
- tetrachloride
- 11. Chloroform (CHCl<sub>3</sub>)

Strongest

Weakest

- 12. H<sub>2</sub>CO
  - ø .

### Polar vs Nonpolar

- Use electronegativities and shapes
- A molec is polar if one end is more negative (hogs e) and the other more positive

●H—F

- F is more electronegative
- You can divide the molec into positive and negative ends

### Dot structure, model, polarity

- Polar or nonpolar?
  - CH<sub>2</sub>Cl<sub>2</sub>
  - Hydrobromic acid (HBr)
  - Boron trichloride
  - Carbon tetrabromide
  - Water

#### Intermolecular Forces

- Hold molecules together
- Strong IMF—high melting and boiling points
- Solids or liquids at room temp
- Weak IMF—low MP and BP
  - Gases at room temp

#### Ionic bonds

- Hydrogen bonds
  - Polar molecules
  - must have H
  - Must have 1: <u>Nerd On a Flagpole</u>
- Dipole interactions\*
- Polar molecules
- Dispersion forces\*
  - Also called London forces
  - Nonpolar molecules

# • What kind of forces hold these molecules together?

- CH<sub>2</sub>Cl<sub>2</sub>
- Hydrobromic acid (HBr)
- Boron trichloride
- Water
- Calcium chloride

- Which will have the highest melting/boiling point? Lowest? Put them in order
  - CH<sub>2</sub>Cl<sub>2</sub>
  - Boron trichloride
  - Water
  - Calcium chloride

## Determine IMF and high/low MP

- Nitrogen
- 2. Hydrophosphoric acid, H<sub>3</sub>P
- 3. Hydrogen cyanide
- 4. Hydrobromic acid,
- HBr
- Boron trifluoride
- Silicon dioxide

6. Ammonia (NH<sub>3</sub>)

- 7. Methane (CH<sub>4</sub>)
- B. Hydrosulfuric acid,
  - H<sub>2</sub>S
- - tetrachloride
- 10. Chloroform (CHCl<sub>3</sub>)
- 11. H<sub>2</sub>CO