AP Worksheet 3b (Gas Laws)

For numbers 1 through 3 the temperature and the amount of gas are both constant.

1. Write a mathematical equation expressing the relationship between pressure and volume.
2. Calculate the new pressure if a 2.45 L sample of a gas at a pressure of 1.01 atm is contracted to a volume of 2.29 L .
3. Calculate the new volume if 13.3 L of a gas initially at a pressure of 2.51 atm is subjected to an increase in pressure equivalent to 65.0 mmHg .

For numbers 4 through 6 the pressure and the amount of gas are both constant.
4. Write a mathematical equation expressing the relationship.
5. Calculate the volume of a particular gas if 1.23 L of it, initially at a temperature of $32.0^{\circ} \mathrm{C}$ is subjected to a drop in temperature of $19.0^{\circ} \mathrm{C}$.
6. Calculate the volume of a gas if a 12.78 L sample of it, initially at a temperature of $-50.00^{\circ} \mathrm{C}$ is heated to a temperature of $28.00^{\circ} \mathrm{C}$.

For numbers 7 and 8 , assume the gas behaves ideally.
7. A sample of a group 1 bromide weighing 2.000 g was converted to a gas at $504.0^{\circ} \mathrm{C}$ and 1.000 atm of pressure. The resulting vapor occupies a volume of 1238 mL . Identify the group 1 metal present in the compound.
8. What volume does 1.24 g of fluorine gas occupy under conditions of $5.20^{\circ} \mathrm{C}$ and 2.04 atm ?

For numbers 9 and 10, Standard Temperature and Pressure (STP) is $0^{\circ} \mathrm{C}$ and 1.00 atm.
9. *The density of oxygen is $1.43 \mathrm{~g} / \mathrm{L}$ at STP. Determine the density at $17^{\circ} \mathrm{C}$ and 800 . torr.*
10. Determine the volume occupied by 4.0 g of chlorine gas at STP.

* $=$ challenge

