CHEMISTRY: IONIC COMPOUNDS Charges across the Periodic Table: | TOTAL EBUZE. | | | | | | | | | | |--------------|----|-----|-----|-----|----|------|------|-------|--| | | IA | IIA | IIA | IVA | VA | VIA | VIIA | TITTA | | | Element | Na | Mg | A1 | Si | P | 7111 | CI | VIIIA | | | Charges | +1 | +2 | +3 | +4 | 3 | 3 | | Ar | | | | | | | | | | | 0 | | # I. Making IONIC COMPOUNDS: In creating an ionic compound, the positive charges from the metal ion must balance the negative charges from the non-metal ion, when the charges are added together. Eg) Na⁺ Cl⁻ +1 -1 = 0 NaCl $$Mg^{2+}$$ Cl⁻ +2 -1 = +1 (not balanced - need 2 Cl⁻) Mg^{2+} 2Cl⁻ +2 2x(-1) = 0 MgCl₂ Na^{+} O²⁻ +1 -2 = -1 (not balanced - need 2 Na⁺) $2Na^{+}$ O²⁻ 2x(+1) -2 = 0 Na₂O Practice: Write the compounds formed between ions of the following elements a) Ca and O e) K and I b) Rb and O f) Fe³⁺ and Cl c) Al and O g) Fe²⁺ and Cl d) Mg and N h) H and O # 2. Naming BINARY Ionic Compounds (involving 2 elements only) - 1. Metal ion is named first - 2. Non-metal ion is named second ending in "ide" - 3. If metal ion is a transition element, use roman numerals in the name to indicate charge on the metal ion. - Eg) NaCl Sodium chloride AlF₃ Aluminum fluoride Ca₃N₂ Calcium nitride MgH₂ Magnesium hydride Potassium phosphide Practice: Name the following compounds: | a) Na ₂ S | b) SrH ₂ | |-----------------------------------|-----------------------------------| | c) Al ₂ S ₃ | d) BeCl ₂ | | e) RbI | f) Ba ₃ N ₂ | | g) Cs ₂ O | g) Mg ₃ P ₂ | | Practice: Write formulas for the following compounds: a) sodium nitride | b) calcium fluoride | |---|---| | c) aluminum selenide | d) hydrogen sulfide | | II. Transition Metal Ions | | | Transition metals may lose different numbers of ele
electron to form a Cu ⁺ ion, OR two electrons to form | | | This mans that there must be a way to name the tran | nsition metal ion to indicate the charge on the ion. | | RULES: We use roman numerals to name compour EXCEPT: Silver always Ag^+ Zinc always Zn^{2+} | nds containing transition metal ions. Aluminum Al ³⁺ | | Eg) Cu ⁺ is copper (I) ion Cu ²⁺ is copper | (II) ion | | Eg) Fe ²⁺ is iron (II) ion so FeO indicates that Fe ²⁺ | and O ²⁻ are present, so this is named: iron(II) oxide | | Sn^{4+} is tin(IV) ion so SnO_2 indicates that Sn^{4+} and 2 oxide | 2 ions of O ²⁻ are present, so this is named tin (IV) | | Practice: Name the following | | | a) FeCl ₂ | | | b) Cu ₂ S | | | c) PbI ₄ | | | d) SnF ₂ | | | e) ZnBr ₂ f) SnO | | | g) Cr ₂ O ₃ | | | h) CoP | | | i) Ag ₂ O | | | Practice: Give formulas for the following: | | | a) cobalt (II) phosphide | | | b) copper (II) iodide | | | c) tin (IV) fluoride | | | d) chromium (II) nitride | | | e) gold (III) oxide | | | f) tin (II) sulfide | | | g) lead (IV) nitride | | | h) zinc chloride | | | i) silver sulfide | | # III. Compounds containing POLYATOMIC IONS Polyatomic ions are ions that are made up of more than one atom. ### **RULES:** - 1. When you see more than 2 elements in a compound, look for the polyatomic ion. - 2. They are used in compounds the same way that any ion would be treated as a unit, where the whole unit is given a specific charge. - 3. If more than one polyatomic ion is needed in a compound, brackets are used with the subscript after the bracket to indicate the number of polyatomic ions in the compound. - 4. The name of the compound includes the name of the polyatomic ion Eg) NO₃ nitrate ion Sodium nitrate: Na⁺ NO₃ +1 -1 = 0NaNO₃ Mg^{2+} $NO_3^ Mg^{2+}$ $(NO_3^-)_2$ Magnesium nitrate: +2 -1 = -1 (not balanced; we need 2 nitrate ions) +2 2x(-1) = 0 $Mg(NO_3)_2$ Fe^{3+} NO_3 Iron (III) nitrate -1 = -2 (not balanced; we need 3 nitrate ions) +3 Fe^{3+} $(NO_3)_3$ +3 3x(-1) = 0Fe(NO₃)₃ Write formulas for the following compounds: - a) sodium sulfate - b) calcium sulfate - c) aluminum phosphate - d) magnesium carbonate - e) sodium carbonate - f) iron (II) carbonate - g) iron (III) carbonate - h) aluminum hydroxide - i) sodium nitrite - j) strontium chromate - k) chromium (III) acetate - 1) copper (II) sulfate Write names for the following compounds: a) $Al_2(SO_4)_3$ g) Ni(ClO3)2 b) $Zn(OH)_2$ h) Ni(ClO₃)₂ - c) Ag₂Cr₂O₇ - d) CaCO₃ - e) Na₂SO₃ - $Sn(CO_3)_2$ | | | 4 | |--|--|---| |