Objectives

Coulomb's Law Universal Gravitation

Forces and Charges

Coulomb's Law

- Charges exert forces
- What factors influence force?

b

- $F=K \frac{q_{a} q_{b}}{r^{2}}$
- $K=9.0 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}$
- Demonstrate the forces exerted by charged objects
- Summarize the relationship between charges and distance
- Solve problems using Coulomb's law and the universal law of gravitation

Coulomb's Law

- Force depends on charge and distance
- Unit for charge is Coulomb (C)
- Electron has a charge of $-1.60 \times 10^{-19} \mathrm{C}$
- Proton has a charge of $+1.60 \times 10^{-19} \mathrm{C}$

Practice Problem 1

- Two electrons in an atom are separated by $1.5 \times 10^{-10} \mathrm{~m}$.
- What is the electric force between them? $\left(q_{\text {electron }}=-1.60 \times 10^{-19} \mathrm{C}\right)+1.0 \times 10^{-8} \mathrm{~N}$
- What does this positive force indicate?
- What would a negative force indicate?

Practice Problem 2

- Two spheres each have a charge of $4.5 \times 10^{-5} \mathrm{C}$. If the force between them is $6.2 \times 10^{-2} \mathrm{~N}$, what is the distance that separates them? 17 m

Practice Problem 3

- Sphere A has a charge of $-3.0 \mu \mathrm{C}$ and sphere B has a charge of $+6.0 \mu \mathrm{C}$. If the spheres are separated by 4.0 cm , what is the force between the two? $-1.0 \times 10^{2} \mathrm{~N}$

Universal Gravitation

- $F=G \frac{m_{1} m_{2}}{r^{2}}$
- $G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$

Practice Problem 6

- What is the gravitational force between Penelope (57 kg) and the earth when she is at the earth's surface? ($m_{\text {earth }}=5.98 \times 10^{24} \mathrm{~kg}$; average $\left.r_{\text {earth }}=6.37 \times 10^{6} \mathrm{~m}\right) 560 \mathrm{~N}$

Practice Problem 7

- Use the law of universal gravitation to show why the acceleration due to gravity at the earth's surface is $9.80 \mathrm{~m} / \mathrm{s}^{2}$.

