Density Worksheet (challenge)

1. What is density?
2. A copper penny has a mass of 3.1 g and a volume of 0.35 mL . What is the density of copper?
3. The density of silver is $10.5 \mathrm{~g} / \mathrm{mL}$. What is the volume of a solid silver bar that weighs 68 g ?
4. A student finds a piece of metal that she thinks is aluminum. In the lab, she determines that the metal has a volume of $2.45 \times 10^{-4} \mathrm{~m}^{3}$ and a mass of 612 g .
a. Calculate the density in g / mL (remember $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$).
b. Is the metal aluminum (density $=2.7 \mathrm{~g} / \mathrm{mL})$?
5. A plastic ball has a volume of $19.7 \mathrm{~cm}^{3}$ and a mass of 0.0158 kg .
a. Calculate the density of this ball in g / mL.
b. Would this ball sink or float in water (density $=1.00 \mathrm{~g} / \mathrm{mL}$)?
c. Would this ball sink or float in gasoline (density $=0.66 \mathrm{~g} / \mathrm{mL}$)?
6. A balloon is inflated with helium. The mass of this helium is 0.0374 kg and the volume is $2.2 \times 10^{9} \mathrm{~mL}$. What is the density of helium in g / L ?
7. A piece of lead has a volume of 19.84 mL . The density of lead is $11.4 \mathrm{~g} / \mathrm{mL}$. What is the mass of this lead in kg?
8. What is the volume (in microliters) of cough syrup that has a mass of $5.00 \times 10^{-5} \mathrm{~g}$? The density of the cough syrup is $0.950 \mathrm{~g} / \mathrm{mL} .\left(1 \mu \mathrm{~L}=1 \times 10^{-6} \mathrm{~L}\right)$
9. What is the mass of a pure silver coin that has a volume of $1.3 \times 10^{-3} \mathrm{~L}$? The density of silver is $10.5 \mathrm{~g} / \mathrm{mL}$.
10. Circle the one with the highest density:
a. Water or Oil
b. Air or Gold
c. Helium or Air
11. What should Indiana Jones have done to safely steal the gold?

Challenge problem

The gold idol in "Indiana Jones" has a volume of approximately 1.5 L. If the density of gold is $19320 \mathrm{~kg} / \mathrm{m}^{3}$, what is the mass of the solid gold idol in pounds? $\left(1 \mathrm{lb}=454 \mathrm{~g}, 1 \mathrm{~cm}^{3}=1\right.$ mL)

