
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

OBJECTIVES
- Understand what a conversion
factor is
- Use factors to convert quantities

\qquad

Understand what a conversion
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

UNITS

- Dimensional analysis is all about units
- Cancel out units until you get the ones you want \qquad
\qquad
\qquad
\qquad
CONVERSION FACTORS
- 12 inches $=1$ foot
- $\frac{1 \text { foot }}{12 \text { inches }}=\frac{12 \text { inches }}{1 \text { foot }}=1$
- How many inches are in 3.4 feet?
\qquad
\qquad
1 foot
\qquad
\qquad
\qquad
\qquad
\qquad

PRACTICE
\qquad

1. How many miles are in 4500 feet?
2. How many eggs are in 4.5 dozen? \qquad
3. If $2.54 \mathrm{~cm}=1$ inch, how many $\mathbf{c m}$ are in a 12 inch-long sandwich? \qquad
\qquad
\qquad
\qquad

CONVERSION FACTORS
\qquad

- Other numbers can be used as conversion factors:
- Speeds $\left(55 \mathrm{mph}=\frac{55 \text { miles }}{1 \text { hour }}\right)$
- Densities $\left(1.00 \mathrm{~g} / \mathrm{mL}=\frac{1.00 \mathrm{~g}}{1 \mathrm{~mL}}\right)$
- "Pers" (2 cookies per student, $\frac{2 \text { cookies }}{1 \text { student }}$)
\qquad
\qquad
\qquad
\qquad
\qquad

PRACTICE

\qquad

1. If you drive $75 \mathrm{mi} / \mathrm{hr}$ down the interstate, how long will it take you to get to Pueblo (84 miles)?
2. If you run for 5.6 hours at $7.1 \mathrm{mi} / \mathrm{hr}$, how far have you gone?
\qquad
\qquad
\qquad
\qquad
\qquad

METRIC UNITS

\qquad

1. How many L are in $4.3 \times 10^{4} \mathrm{pL}$?
\qquad
2. How many cm are in 6.0 m ?
\qquad
3. How many $\mu \mathrm{m}$ are in 4.0 m ?
\qquad
\qquad
\qquad

TWO STEP PROBLEMS

1. How many inches are in 0.64 miles?
2. How many teaspoons are in 5 cups of flour? ($1 \mathrm{c}=16 \mathrm{~T}, 1 \mathrm{~T}=3 \mathrm{t}$) \qquad
3. The sun is 1.5×10^{8} kilometers away from Earth. How many \qquad micrometers is this? \qquad
\qquad

MORE PROBLEMS

1. I drive 19 miles to get home. If I drive at $55 \mathrm{mi} / \mathrm{hr}$ (the speed limit), how many minutes does it take me?
2. The cruising speed of a $\mathrm{C}-17$ is $8.33 \times 10^{5} \mathrm{~m} / \mathrm{hr}$. If this plane flies for 10.3 hours, how many km has it flown?

MORE PROBLEMS

1. The density of water is $1.00 \mathrm{~g} / \mathrm{mL}$. If you have 5.0 L of water, what is the mass in kg ?
2. What is the volume of 1.0 kg of \qquad gold? $\left(d_{A u}=19.3 \mathrm{~g} / \mathrm{cm}^{3}\right)$
\qquad
\qquad
\qquad

MORE PROBLEMS

1. If you drive at $40 \mathrm{~km} / \mathrm{hr}$, how many
\qquad cm / s is this?
2. The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the speed in $\mathrm{km} / \mathrm{hr}$? \qquad
3. An ant crawls at a rate of $36 \mathrm{~cm} / \mathrm{s}$. What is this speed in miles/hr? \qquad ($1.6 \mathrm{~km}=1 \mathrm{mi}$) \qquad
\qquad

MORE PROBLEMS

1. You run down an 18.0 m hallway. If you run at $9.40 \mathrm{~m} / \mathrm{s}$, how many minutes does it take?
2. Light travels at $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How many hours does it take light to travel from the sun to Pluto 5.9×10^{8} km away?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EXPONENT PROBLEMS

1. You measure the volume of the
\qquad classroom to be $3.4 \times 10^{2} \mathrm{~m}^{3}$. Calculate the volume in cm^{3}.
\qquad
2. An M\&M has a volume of 0.65 cubic \qquad centimeters. Determine the volume in cubic meters. \qquad
\qquad
\qquad

CHALLENGE PROBLEM

\qquad
The distance between the Earth and
\qquad at a constant $55 \mathrm{mi} / \mathrm{hr}$, how many
\qquad ($1.61 \mathrm{~km}=1 \mathrm{mi}$)
\qquad
\qquad
\qquad

