YOU MUST SHOW ALL YOUR WORK! NO WORK = NO CREDIT

Useful conversions:

$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{~L}=1.06 \mathrm{qts}$
$4 \mathrm{qts}=1 \mathrm{gal}$	$1 \mathrm{lb}=453.6 \mathrm{~g}$
$1 \mathrm{~m}=1.094$ yds	$1760 \mathrm{yds}=1 \mathrm{mile}$

Write all your metric conversions here (include units on right side):
$1 \quad \mathrm{Gg}=1 \times 10^{9} \mathrm{~g}$ \qquad $\mathrm{cm}=$ \qquad

ML = \qquad $\mathrm{mm}=$ \qquad
\qquad $\mathrm{hm}=$ \qquad
\square mm
$\ldots \quad$ daL $=$ \qquad
$\mu \mathrm{g}=$
\qquad
\qquad
nL = \qquad

1. Dr. MD's intestine is $7.5 \times 10^{3} \mathrm{~mm}$ long.
a. How long is this in cm ?
b. What is the intestine's length in inches?
2. Nurse RN's intestine is $6.4 \times 10^{3} \mathrm{~mm}$ long. How long is this in inches?
3. Complete the following metric unit conversion problems:
a. $(\mathrm{x}) \mathrm{km}=3.54 \times 10^{4} \mathrm{~cm}$
b. (x) $\mathrm{pg}=5.87 \times 10^{-3} \mathrm{dg}$
c. $(x) m L=134 d a L$
4. A 2008 Corvette gets 15 miles/gal in the city. What is this mileage in km / L ?
5. The heaviest man weighted 714 lbs . What was his mass in kg (before he died of heart failure, of course)?
6. A marathon is 26.2 miles long. How long is this in km ?
7. Light travels at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How many miles/hour is this?
8. Jacques, the speeding Canadian, gets pulled over in the US. His speedometer reads $120 \mathrm{~km} /$ hour.
a. How fast is he going in miles/hour?
b. How fast is he going in $\mathrm{m} / \mathrm{sec}$?
9. Convert $66 \mathrm{ft} / \mathrm{sec}$.
10. Light travels at a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. If the sun is $1.5 \times 10^{8} \mathrm{~km}$ away, how many years does it take for sunlight to reach earth?
11. If $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$, how many L are in $4.6 \times 10^{-2} \mathrm{~cm}^{3}$?
12. The density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this to kg / L.
13. Using dimensional analysis, calculate the volume in L of $5.32 \times 10^{-2} \mathrm{~kg}$ of gold (the density of gold is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$).
