Friction Forces

Ch 5.18, 5.19, 5.20

Objectives

- Define friction force
- Distinguish between static and kinetic friction

Initial investigation

- \bullet Determine which factors affect $\mathsf{F}_{\mathsf{f},\mathsf{k}}$ and $\mathsf{F}_{\mathsf{f},\mathsf{s}}$
- •~5 minutes
- Equipment: spring scales, wood, masses

Kinetic Friction

- Friction between moving surfaces
- Opposes motion
- Kinetic friction force equals coefficient of kinetic friction (μ_k) times normal force
- Normal force is perpendicular to surface
- $F_{f,k} = \mu_k F_N$
- Coefficients (µ) have no units

Static Friction

- Force exerted on one surface by another when there is NO MOTION
- Opposes motion
- \bullet Static friction force is less than or equal to coefficient of static friction (μ_s) times normal force

• $F_{f, s max} = \mu_s F_N$

• When do you need friction?

• When is friction not useful?

Steps for Problem Solving

- Draw free body diagram
- Identify knowns, unknowns, eqns
- Determine net forces
- Calculate weight (F_g)
- Calculate F_N
- Solve

2. A 32 kg crate rests on a horizontal surface. It requires 75 N of force to set it in motion. Calculate the coefficient of static friction.

- A 23 kg chair initially at rest on a horizontal floor requires a 365 N force to set it in motion. Once in motion, a 327 N force keeps it moving at constant velocity.
 - a. Calculate the coefficient of static friction between the chair and floor.
 - b. Calculate the coefficient of kinetic friction between the chair and floor.

Additional Problem

- A hockey puck on a frozen pond has an initial velocity of 20.0 m/s. If the puck travels 115 m before stopping, determine the coefficient of friction between the puck and ice.
 - Kinetic or static friction?
 - Diagram, knowns, unknowns, eqns,
 - No, you don't really need the mass!
 - Answer = .177

Investigation

- Determine coefficients of static and kinetic friction
- Consider:
 - How will you observe static friction?
 - How will you observe kinetic friction?
 - What parameters will you need to define?

12

Investigation

- Analyze your data using LoggerPro
- 1 paper per group of **2**
- Turn in methods, data, approved sketch of graph, conclusion

