Friction homework

- 1. A block weighing 300. N is being moved *at constant speed* over a horizontal surface by a force of 50.0 N applied parallel to the surface.
 - a. Draw a free body diagram for the block.
 - b. What is the coefficient of kinetic friction? (0.167)

c. What would be the acceleration of the block if $\mu_k = 0.00$? (1.63 m/s²)

- 2. A 100. N force is applied horizontally to a 50.0 kg crate resting on a level floor. The coefficient of kinetic friction is 0.150.
 - a. Draw a free body diagram to represent this situation.
 - b. What is the acceleration of the crate? (0.530 m/s^2)

3. A 100. N force is applied horizontally to a 50.0 kg crate resting on a level floor. The coefficient of static friction is 0.250. Is the 100. N force sufficient to cause the crate to accelerate? Draw a free body diagram and then explain why or why not.

- 4. A minimum horizontal pull *F* is required to get a block of mass *m* to just start moving from rest on a horizontal surface.
 - a. How large is the normal force acting on the block?
 - b. How large is the friction force acting on the block just before it starts to move?
 - c. What is the coefficient of static friction between the block and the horizontal surface?
 - d. Calculate the value of μ_s if it takes a 13 N pull to get a 2.2 kg block to start moving from rest. (0.60)
- 5. Carlos and Miranda are in the lab, determining the coefficients of friction between blocks of various materials and the floor. Each block has a hook on its side. Miranda attaches the spring scale to each block of mass m and pulls each block at constant speed across the floor while Carlos record the spring scale reading F.
 - a. How will Carlos and Miranda calculate their values for μ_k ?

Material pulled along	Mass of the block (kg)	Spring scale reading F	Value of μ_k
the floor		(N)	
Brick	2.20	1.3	
Pine	0.56	2.2	
Steel	1.20	5.5	

b. Complete the table for results that they measured in the lab: