Image: Provide state in the provided state in the provi

Something we have ignored...

- The Lewis dot diagrams for elements, such as C, N or O do not adequately explain/predict how these atoms actually use their orbitals to form bonds
- A hybridization model was developed in order to explain the bond length/angles and molecular geometry that molecules were experimentally shown to have

- Each H atom has a single electron (1s¹)
- ▶ The O atom has 8 total electrons (1s²2s²2p⁴), with orbitals filled as shown in diagram
- ▶ The two lone pairs on O (2s² and the 2 e⁻ in the first 2p orbital) are not equivalent (shape, size and energy differences between s and p) so logically they should **not** have the same impact on overall geometry...
 - Experiments show that they actually are equivalent Need a new orbital model that reflects this

	sp² Hybri	d Orbitals		19
 The sp² hybric one p orbital 	s are made fror unhybridized	m 1 s-orbital	and 2 p-orb	itals, leaving
 sp² orbitals me p-orbital will n 	ake 3 single (sig nake 1 pi bond	ma) bonds a	and the 1 ur	hybridized
	sp ² hybrid C	sp ² hybrid N	sp ² hybrid O	

<u>\$</u> 10

🔸 1s

<u>4</u> 10

	sp Hybrid Orbitals	25
sp hybrid unhybridi	s combine 1 s-orbital and 1 p-orbital, leaving 2 ized p-orbitals solved C for y for the point of the point	

sp H	ybridization		26
 One s-orbital and orbital orbital orbital 	one p-orbital co		
Co	Two sp hybrid orbitals pyright © 2009 Pearson Prentice Hall, Inc	sp hybrid orbitals shown together (large lobes only) :	

	Example #	ŧ1	32
Which at picture re	om and hybridization epresent?	pattern does this	
		U A) SP U	

Example #6

37

If the bond angle in SeH₂ is measured to be 90°, what does this tell you about the hybridization of Se?