

10	Average rate of reaction Example					
	$\mathrm{A}(\mathrm{g}) \rightarrow \mathrm{B}(\mathrm{g})$					
	$\frac{\text { Time (s) }}{\text { Mole }}$	${ }_{0}^{0.00}$	10.0	${ }^{20.0} 0$		${ }^{40.0}$

The average rate of disappearance of A between 10 s and 20 s is \qquad
A. $2.2 \times 10^{-3} \mathrm{~mol} / \mathrm{s}$
B. $1.1 \times 10^{-3} \mathrm{~mol} / \mathrm{s}$
C. $4.4 \times 10^{-3} \mathrm{~mol} / \mathrm{s}$
D. $454 \mathrm{~mol} / \mathrm{s}$
E. $9.9 \times 10^{-3} \mathrm{~mol} / \mathrm{s}$

42	Summary of first order reactions
	Differential rate law: $\text { Rate }=-\frac{\Delta[A]}{\Delta T}=k[A]$ Integrated rate law: $\ln [A]-\ln [A]_{o}=-k t$ Straight line plot: $\ln [A]$ vs \dagger - Slope: slope $=k$ - Half-life: $t_{1 / 2}=\frac{0.693}{k}$

Second order reactions

46 Example 1
Which one or the tollowing graphs shows the correct relationship between concentration
and time for a reaction that is second order in [A]? and time for a reaction that is second order in $[\mathrm{A}]$?
A)

M $^{(A)}$ \qquad
B)
$\sqrt{ }$
E)

[A]
D)

E)

Second order reactions Example 2	
	The following reaction is second order in $[\mathrm{A}]$ and the rate constant is $0.039 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ $\mathrm{A} \rightarrow \mathrm{~B}$ The concentration of A was 0.30 M at 23 s . The initial concentration of A was \qquad M A) 2.4 B) 0.27 C) 0.41 D) 3.7 E) 1.2×10^{-2}

48	Summary of second order reactions
	- Differential rate law: $\text { Rate }=-\frac{\Delta[A]}{\Delta T}=k[A]^{2}$ - Integrated rate law: $\frac{1}{[A]_{t}}-\frac{1}{[A]_{o}}=-k t$ - Straight line plot: 1/[A] vs \dagger - Slope: slope $=\mathrm{k}$ -Half-life: Calculate

Practice 4		
	$O+1 / 2$ e if rea e law a	or seco
	Time (s)	[NO_{2}] (M)
	0.0	0.01000
	5.0	0.00787
	10.0	0.00649
	20.0	0.00481
I	30.0	0.00380

Collision theory
Surface area

- Why does changing the surface area affect the
rate of a reaction?

Reaction mechanisms

Slow first step example

- Write the rate law for the following reaction

$$
2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}
$$

Step 1: $\mathrm{A}+\mathrm{B}_{2} \rightarrow \mathrm{AB}+\mathrm{B}$ (slow)
Step 2: $A+B \rightarrow A B \quad$ (fast)

- Use coefficients of reactants from SLOW step as exponents in rate law:

Rate $=k[A]\left[B_{2}\right]$

- Check that rate law is only written in terms of reactants of OVERALL reaction
$80 \quad$ Practice 8
Slow first step

1. Write the rate law for:
$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$
(overall)
Step 1: $\mathrm{NO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{3}+\mathrm{NO}$
(slow)
Step 2: $\mathrm{NO}_{3}+\mathrm{CO} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}_{2}$
(fast)

