
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

States of Matter			
SOLID LIQUID Ghape Volume Compress?			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

Extensive and Intensive Properties
-Extensive
- Depends on amount of matter
- Example?
- Intensive
- Depends on type of matter, not amount
-Example?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Physical Properties and Change

- Physical changes \qquad
- Physical properties change without changing composition
\qquad
- Examples?
- Physical properties
- Observed and measured without \qquad changing composition
- Examples? \qquad
\qquad

Chemical Properties and Change
\qquad

- Chemical change-changes into new \qquad substance
-Examples?
\qquad
-Chem property-ability to undergo chemical change
- New products are formed
- Only observed during chem change

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conservation of Mass

\qquad

- Mass is neither created nor destroyed
\qquad
- Mass of products ALWAYS equal to mass \qquad of reactants

Conservation of Mass

- If you react 2.0 g of hydrogen with 32.0 g of \qquad oxygen, what mass of water will be produced? \qquad
- Hydrogen peroxide decomposes into oxygen and hydrogen. If 68 g of hydrogen peroxide decomposes and forms 4 g hydrogen, how much oxygen will be produced?
\qquad
\qquad
\qquad
\qquad
\qquad

Practice problems

- A 10.0 g sample of magnesium reacts with \qquad oxygen to form 16.6 g of magnesium oxide. How many grams of oxygen reacted?
- A student separates water into hydrogen and oxygen gases. 10.0 g of hydrogen and 79.4 g of oxygen were collected. How much water was originally involved in this separation?

Practice problems ANSWERS

- A 10.0 g sample of magnesium reacts with oxygen to form 16.6 g of magnesium oxide. How many grams of oxygen reacted? 6.6 g
- A student separates water into hydrogen and oxygen gases. 10.0 g of hydrogen and 79.4 g of oxygen were collected. How much water was originally involved in this separation? 89.4 g

Classifying Matter

- Pure substances vs mixtures
- Pure substances are the same throughout and are only composed of one thing (fixed composition)
- Can you write a formula?
-Examples?
- Mixtures can differ throughout and are composed of two or more things (varied composition)
-Examples?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Substances vs mixtures		
	Substances	Mixtures
Matter?	One type	Multiple
Composition?	Definite	Variable

Substance	Mixture
One kind of material EMore than one kind of material EMade by chemical change EMade by physical change Definite composition EVariable composition	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Substances

- Pure substances can be elements or compounds
Elements-only one kind of atom \qquad
- Simplest kind of matter with unique properties
- Cannot be broken down into simpler substances by chemical means
- Cmpds-two or more elements chemically combined
- Can be broken down by chemical means

Mixtures
- Mixtures are homogeneous or
heterogeneous
- Phase-part of a sample that looks and
behaves the same
- Homogeneous-looks the same
throughout
• How many phases?
- Heterogeneous-looks different
- How many phases?

Mixture Activity
- In your groups, come up with examples of
both homogeneous and heterogeneous
mixtures
- Points earned for original mixtures
- Group with the most points will earn extra
credit on homework!

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Separation Techniques

- Filtration \qquad
- Solid from liquid
- Evaporation
- Dissolved solid from liquid
\qquad
\qquad
- Distillation
- Liquid from dissolved solid, two liquids
\qquad
- Chromatography
- Two or more solids

