

Scientific Notation

- Coefficient is between 1 and 10
- Big numbers have + exponents
- □ Little numbers have exponents
- \Box 42 000 = 4.2x10⁴
- $\square 0.000 12 = 1.2 \times 10^{-4}$

Quantitative Measurements

□ SI stands for International Systems of Units

Base Quantity	Name of Unit	Symbol
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s or sec
Temperature	Kelvin	К*
Amount of Substance	Mole	mol
Electric Current	Ampere	A
Luminous Intensity	Candela	cd

* Remember Kelvin = 273.15 + °C

Metric System Prefixes

Prefix	Meaning
Mega (M_)	$1 \text{ Mm} = 1 \times 10^6 \text{ m}$
kilo (k_)	$1 \text{ km} = 1 \text{x} 10^3 \text{ m}$
hecto (h_)	$1 \text{ hm} = 1 \text{x} 10^2 \text{ m}$
deka (da_)	$1 \text{ dam} = 1 \times 10^1 \text{ m}$
deci (d_)	$1x10^{1} dm = 1 m$
centi (c_)	$1x10^{2}$ cm = 1 m
milli (m_)	$1x10^{3}$ mm = 1 m
micro (µ_)	$1x10^{6} \mu m = 1 m$
nano (n_)	1x10 ⁹ nm = 1 m
pico (p_)	1x10 ¹² pm = 1 m

Percent Error

- The difference between a theoretical (true value) and the experimental value
- Always expressed as a positive number (absolute value)

Precision and Accuracy

Random and Systematic Errors

- Random error—caused by unknown and unpredictable changes in expt
 - Inability to take a measurement in exactly the same way to get the exact same number
- Systematic error—inaccuracies are consistent in the same way

Problems persist throughout the expt

 Sources: http://www.math.ttu.edu/~gilliam/ttu/s08/m1300_s08/downloads/errors.pdf, https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorA nalysis.html

Significant Figures

- When dealing with measurements, significant figures become very important
- Significant figures are the meaningful digits in a measured or calculated quantity
- They indicate all of the certain digits plus one digit that is uncertain or estimated
 - Read all values you know for sure + 1 guess

Determining Sig Figs

Rules for Significant Figures

- Any nonzero digit is significant
- Zeros between nonzero digits are always significant
- Zeros at the beginning of nonzero digits are never significant
- Zeros at the end of a number are significant if the number contains a decimal point

Determining Sig Figs

Zeros at the beginning of

nonzero digits are never

Zeros at the end of a number are significant if the number contains a decimal point

significant

ur Rules	Two Rules (Summary)
Any nonzero digit is significant	No decimal at end: cross out zeroes at end
Zeros between nonzero digits are always significant	

 Decimal at beginning: cross out zeroes from beginning

Determining Sig Figs

Rules

- Any nonzero digit is significant
- Zeros between nonzero digits are always significant
- Zeros at the beginning of nonzero digits are never significant
- Zeros at the end of a number are significant if the number contains a decimal point

ummarv

- No decimal at end: cross out zeroes at end
- 21 000
- 21 000.0

Determining Sig Figs

- Any nonzero digit is significant
- Zeros between nonzero digits are always significant
- Zeros at the beginning of nonzero digits are never significant
- Zeros at the end of a number are significant if the number contains a decimal point

Summary No decimal at end: cross

- out zeroes at end
- □ 21 000 2
- □ 21 000.0 <mark>6</mark>

Determining Sig Figs

Any nonzero digit is significant

- Zeros between nonzero digits are always significant
- Zeros at the beginning of nonzero digits are never significant
- Zeros at the end of a number are significant if the number contains a decimal point

No decimo	al at end:	cross
out zeroes	at end	
21 000	2	
21 000.0	6	

- Decimal at beginning: cross out zeroes from beginning
- 0.0021
- 1.0021

Determining Sig Figs

Rules Any nonzero digit is No decimal at end: cross significant out zeroes at end 21 000 Zeros between nonzero digits 2 are always significant 21 000.0 6 Zeros at the beginning of Decimal at beginning: cross nonzero digits are never out zeroes from beginning significant <mark>⊒-0.00</mark>21 2 Zeros at the end of a number 1.0021 5 are significant if the number contains a decimal point

Practice!!!!

Measurement	Number of Sig Figs	Measurement	Number of Sig Figs
25 g		0.12 kg	
0.030 kg		1240560. cm	
1.240560 mg		30000000 m/sec	
60000 sec		6.0 x 10 ⁶ kg	
246.31 g		4.09 x 10 ³ cm	
20.06 cm		29.200 cm	
1.050 m		0.02500	

Significant Figures with Calculations

Addition and Subtraction

The result has the same number of decimal places as the measurement with the **fewest decimal places**, or **least precision**

Multiplication and Division

The result contains the same number of significant figures as the measurement with the fewest significant figures

Exact numbers

Keep in mind that exact numbers are obtained from definitions or by counting number of objects and can be considered to have an infinite number of significant figures

Example:

If an object has a mass of 0.2786 g then the mass of eight such objects would be...

0.2786 g x 8 = 2.229 g

Practice!!!!

Calculation	Answer with correct SF	Calculation	Answer with correct SF
3.24 m + 7.0 m		2.6 cm * 3.78 cm	
0.02 cm * 2.371 cm		100.0 g - 23.73 g	
$35 \text{ cm}^2 / 0.62 \text{ cm}$		0.02 cm + 2.371 cm	
6.54 m * 0.37 m		0.036 m * 0.0002 m	
713.1 L – 3.872 L		$40.8 \ m^2 \ / \ 5.050 \ m$	
39 g / 24.2 g		1800 lb + 3.37 lb	
2.030 mL - 1.870 mL		$0.58~dm^3/2.15~dm$	

Temperature Conversions

Temperature Conversion Factors		
Celsius to Kelvin	K = °C + 273.15	
Kelvin to Celsius	°C = K -273.15	
Celsius to Fahrenheit	°F = 1.8(°C) + 32	
Fahrenheit to Celsius	°C = (°F – 32) /1.8	

- □ Convert 72 °F to °C
- □ Convert 233 °C to K

Dimensional Analysis

_	Conversions	factor labol	~*~
ш	Conversions,	ractor-label,	erc

Convert 9.00 in to cm

- Convert 45.6 µL (microliters) to ML (megaliters)
- □ Convert 100 m³ to cm³
- □ Convert 75 miles/hr to m/s