

Scientific Notation

\square Coefficient is between 1 and 10
\square Big numbers have + exponents
\square Little numbers have - exponents
$\square 42000=4.2 \times 10^{4}$
$\square 0.00012=1.2 \times 10^{-4}$

Quantitative Measurements

\square SI stands for International Systems of Units

Base Quantity	Name of Unit	Symbol
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s or sec
Temperature	Kelvin	K^{*}
Amount of Substance	Mole	mol
Electric Current	Ampere	A
Luminous Intensity	Candela	cd

* Remember Kelvin $=273.15{ }^{\circ}{ }^{\circ} \mathrm{C}$

Metric System Prefixes

Prefix	Meaning
Mega (M_)	$1 \mathrm{Mm}=1 \times 10^{6} \mathrm{~m}$
kilo (k_)	$1 \mathrm{~km}=1 \times 10^{3} \mathrm{~m}$
hecto $\left(\mathrm{h}_{-}\right)$	$1 \mathrm{hm}=1 \times 10^{2} \mathrm{~m}$
deka $\left(\mathrm{da}_{-}\right)$	$1 \mathrm{dam}=1 \times 10^{1} \mathrm{~m}$
deci $\left(\mathrm{d}_{-}\right)$	$1 \times 10^{1} \mathrm{dm}=1 \mathrm{~m}$
centi $\left(\mathrm{c}_{-}\right)$	$1 \times 10^{2} \mathrm{~cm}=1 \mathrm{~m}$
milli $\left(\mathrm{m}_{-}\right)$	$1 \times 10^{3} \mathrm{~mm}=1 \mathrm{~m}$
micro $\left(\mu_{-}\right)$	$1 \times 10^{6} \mathrm{\mu m}=1 \mathrm{~m}$
nano $\left(\mathrm{n}_{-}\right)$	$1 \times 10^{9} \mathrm{~nm}=1 \mathrm{~m}$
pico $\left(\mathrm{p}_{-}\right)$	$1 \times 10^{12} \mathrm{pm}=1 \mathrm{~m}$

Percent Error

\square The difference between a theoretical (true value) and the experimental value
\square Always expressed as a positive number (absolute value)
\% Error $=\left|\frac{\text { Theoretical Value-Experimental Value }}{\text { Theoretical Value }}\right| \times 100$
High Accurcy
High Precision

Low Accuracy
High Precision
Kighaccuracy
Low Precision

Low Accuracy
Low Prevision

Random and Systematic Errors

\square Random error-caused by unknown and unpredictable changes in expt

- Inability to take a measurement in exactly the same way to get the exact same number
\square Systematic error-inaccuracies are consistent in the same way
\square Problems persist throughout the expt

Sources:
hitp://www.math.ttu.edu/~gilliam/ttu/s08/m1 300 s08/downloads/errors.pdf, https://www.physics.umd.edu/courses/Phys276/Hill/Information/Notes/ErrorA nalysis.html

Determining Sig Figs

Rules for Significant Figures

\square Any nonzero digit is significant
\square Zeros between nonzero digits are always significant
\square Zeros at the beginning of nonzero digits are never significant
\square Zeros at the end of a number are significant if the number contains a decimal point

Rules	Summary
\square Any nonzero digit is significant	\square No decimal at end: cross out zeroes at end
\square Zeros between nonzero digits are always significant	$\begin{aligned} & \square 21000 \\ & \square 21000.0 \end{aligned}$
Zeros at the beginning of nonzero digits are never significant	
Zeros at the end of a number are significant if the number contains a decimal point	

Significant Figures

\square When dealing with measurements, significant figures become very important
\square Significant figures are the meaningful digits in a measured or calculated quantity
\square They indicate all of the certain digits plus one digit that is uncertain or estimated
\square Read all values you know for sure +1 guess

Four Rules

\square Any nonzero digit is significant
$\square \quad$ Zeros between nonzero digits are always significant
\square Zeros at the beginning of nonzero digits are never significant
\square Zeros at the end of a number are significant if the number contains a decimal point

Two Rules (Summary)

\square No decimal at end: cross out zeroes at end
\square Decimal at beginning: cross out zeroes from beginning

Determining Sig Figs

Rules	Summary
\square Any nonzero digit is significant	\square No decimal at end: cross out zeroes at end
$\square \quad$ Zeros between nonzero digits are always significant	$\begin{array}{ll} \square 21000 & 2 \\ 21000.0 & 6 \end{array}$
\square Zeros at the beginning of nonzero digits are never significant	
Zeros at the end of a number are significant if the number contains a decimal point	

Determining Sig Figs

Determining Sig Figs

	les	Summary		
\square	Any nonzero digit is significant	\square No decimal at end: cross out zeroes at end		
\square	Zeros between nonzero digits are always significant		21000 21000.0	$\begin{aligned} & 2 \\ & 6 \end{aligned}$
\square	Zeros at the beginning of nonzero digits are never significant	Decimal at beginning: cross out zeroes from beginning		
\square	Zeros at the end of a number are significant if the number contains a decimal point		1.0021	5

Significant Figures with Calculations

Addition and Subtraction

\square The result has the same number of decimal places as the measurement with the fewest decimal places, or least precision

\square Multiplication and Division

\square The result contains the same number of significant figures as the measurement with the fewest significant figures

Exact numbers

Keep in mind that exact numbers are obtained from definitions or by counting number of objects and can be considered to have an infinite number of significant figures

Example:
If an object has a mass of 0.2786 g then the mass of eight such objects would be...

$$
0.2786 \mathrm{~g} \times 8=2.229 \mathrm{~g}
$$

Practice!!!!

Temperature Conversions

Temperature Conversion Factors
Celsius to Kelvin $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Kelvin to Celsius
${ }^{\circ} \mathrm{C}=\mathrm{K}-273.15$
Celsius to Fahrenheit
${ }^{\circ} \mathrm{F}=1.8\left({ }^{\circ} \mathrm{C}\right)+32$
Fahrenheit to Celsius
${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$
\square Convert $72{ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$
\square Convert $233^{\circ} \mathrm{C}$ to K

Dimensional Analysis
\square Conversions, factor-label, etc
\square Convert 9.00 in to cm

9.00 in	2.54 cm
	1 in

\square Convert $45.6 \mu \mathrm{~L}$ (microliters) to ML (megaliters)
\square Convert $100 \mathrm{~m}^{3}$ to cm^{3}
Convert 75 miles $/ \mathrm{hr}$ to m / s

