Displacement, velocity, and acceleration graphs

Use the graph below to answer questions \#1-5.

1. Determine the acceleration for each segment of the graph.
2. Determine the displacement for $t=0 \mathrm{~s}$ to $\mathrm{t}=2.0 \mathrm{~s}$.
3. Determine the displacement for $t=2.0 \mathrm{~s}$ to $\mathrm{t}=3.5 \mathrm{~s}$.
4. Determine the total displacement for the entire graph.
5. Describe the motion of the ball. Use velocities and accelerations in your description!
6. Determine the average velocity for $t=0 \mathrm{~s}$ to $\mathrm{t}=3 \mathrm{~s}$ for figure 3-12. Determine the instantaneous velocity for $\mathrm{t}=2 \mathrm{~s}$.

Friction

7. A block weighing 300. N is being moved at constant speed over a horizontal surface by a force of 50.0 N applied parallel to the surface. Draw a free body diagram for the block. What is the coefficient of kinetic friction? (0.167)
8. A 100. N force is applied horizontally to a 50.0 kg crate resting on a level floor. The coefficient of kinetic friction is 0.150 . What is the acceleration?
9. A 250.0 kg box is on a 45° angle. If the coefficient of static friction is 0.25 , does the box slide down the incline?

10. For the incline above, what is the acceleration of the box if the coefficient of kinetic friction is 0.20 ?
11. A different box is accelerating down an incline at an angle of 24°. The box has a mass of 10.0 kg . The box has an acceleration of $2.5 \mathrm{~m} / \mathrm{s} 2$ down the incline. What is the coefficient of kinetic friction on the slope?

Newton's third law

12. What is the force of the 3 kg mass on the 2 kg mass? What is the force of the 2 kg mass on the 3 kg mass?

13. What is the force of Y on X ?

Force and motion

14. A model rocket is accelerating upward at $105 \mathrm{~m} / \mathrm{s}^{2}$. The thrust force is 2940 N . What is the mass of the rocket? $(25.6 \mathrm{~kg})$
15. A hot-air balloon is hovering over a country-fair when a passenger drops a camera. If a camera is 45.0 m above the ground when it is dropped, how long does it take for the camera to reach the ground?
16. A ball is thrown horizontally at $10.0 \mathrm{~m} / \mathrm{s}$ from the top of a hill 50.0 m high. How far from the base of the cliff would the ball hit the ground?
17. Susan drops a ball, and 4 seconds later the ball has a speed of $40 \mathrm{~m} / \mathrm{s}$. What is the ball's acceleration?
