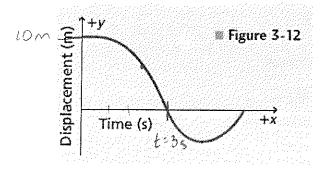

Displacement, velocity, and acceleration graphs

Use the graph below to answer questions #1-5.

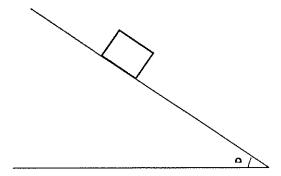
$$A = \frac{3.0 \text{ M/s}}{.55} = 6 \text{ M/s}$$

$$B = 0 \text{ M/s}^2$$


$$C = \frac{3.0 - 3.0 \text{ M/s}}{1.55 - 3.55}$$

$$C = 0 - 6 \text{ M/s}^2$$

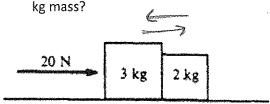
$$F = \frac{0^{m}/5^{n}}{4.5 - 3.55}$$


$$= \frac{0^{m}/5 - 3^{m}/5}{4.5 - 3.55}$$

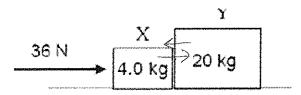
- 1. Determine the acceleration for each segment of the graph.
- 2. Determine the displacement for t = 0s to t = 2.0 s.
- 3. Determine the displacement for t = 2.0 s to t = 3.5 s.
- 4. Determine the total displacement for the entire graph.
- 5. Describe the motion of the ball. Use velocities and accelerations in your description!
- 6. Determine the *average* velocity for t = 0 s to t = 3 s for figure 3-12. Determine the *instantaneous* velocity for t = 2 s.

Friction

- 7. A block weighing 300. N is being moved at constant speed over a horizontal surface by a force of 50.0 N applied parallel to the surface. Draw a free body diagram for the block. What is the coefficient of kinetic friction? (0.167)
- 8. A 100. N force is applied horizontally to a 50.0 kg crate resting on a level floor. The coefficient of kinetic friction is 0.150. What is the acceleration?
- 9. A 250.0 kg box is on a 45° angle. If the coefficient of static friction is 0.25, does the box slide down the incline?



Kirchic


- 10. For the incline above, what is the acceleration of the box if the coefficient of static friction is 0.20?
- 11. A different box is accelerating down an incline at an angle of 24°. The box has a mass of 10.0 kg. The box has an acceleration of 2.5 m/s2 down the incline. What is the coefficient of kinetic friction on the slope?

Newton's third law

12. What is the force of the 3 kg mass on the 2 kg mass? What is the force of the 2 kg mass on the 3

13. What is the force of Y on X?

Force and motion

- 14. A model rocket is accelerating upward at 105 m/s 2 . The thrust force is 2940 N. What is the mass of the rocket? (25.6 kg)
- 15. A hot-air balloon is hovering over a country-fair when a passenger drops a camera. If a camera is 45.0 m above the ground when it is dropped, how long does it take for the camera to reach the ground?
- 16. A ball is thrown horizontally at 10.0 m/s from the top of a hill 50.0 m high. How far from the base of the cliff would the ball hit the ground?
- 17. Susan drops a ball, and 4 seconds later the ball has a speed of 40 m/s. What is the ball's acceleration?

@ Describe notion.

Bull starts at vest + accelerates at 6 m/s2.

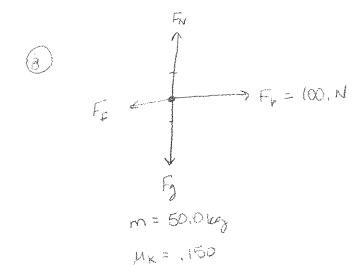
When V = 3.0 m/s, the ball has traveled .75 m.

Boull then maintains constant V, traveling 3.0 m in 10s

Veloath then decreases at rate of -6 m/s2 until

bull comes to a half

Ball then accelerates in @ direction at -6.0 m/s2


Reaches - 3.0 m/s, maintains for 1.0s

Reaches downla = 3.0 m/s2) until it comes to a stop.

(6) average valoaity:
$$\frac{10 \text{ m-on}}{0 \text{ s-3s}} = \frac{10 \text{ m}}{-3} = -3.1 \text{ m/s}$$

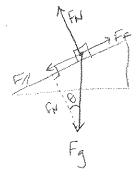
Instantoneous velocity - stope of temperal line at £=25

$$FN = Fg$$
 $Fp = Ff$ because $a = 0$
 $MKFN = Fp$
 $MK = Fp$
 MK

$$F_N = F_g$$

 $F_N = M_g = (50.0 kg)(9.80 M/s^2)$
 $= 490. N$
 $F_{net} = F_p - F_f$
 $ma = F_p - M_k F_N$
 $a = \frac{F_p - M_k F_N}{m} = \frac{100. N - (.150)(490 M)}{50.0 kg}$
 $= .530 M/s^2$

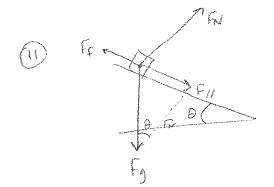
section A:
$$slop = \frac{3.0 \text{ m/s} - 0 \text{ m/s}}{1.5 \text{ s} - 0 \text{ s}} = 6 \text{ m/s}^2$$


$$F: SUOPA = \frac{0 \text{ m/s} - 3.0 \text{ m/s}}{4.5 \text{ s} - 3.5 \text{ s}} = 3.0 \text{ m/s}$$

2 Displacement = area under v vs t

$$6 \cdot h = (1.0s)(-3.0m/s) = -3.0m$$

$$D + E = -.75m + -3.0m = \left(-3.75m\right)$$


$$m = 250.0 \, \text{kg}$$
 $\theta = 45^{\circ}$

$$F_g = mg = (250.016)(9.80 \text{ m/s}^2)$$

= 2450 N

$$F_{F,S} = \mu_S F_N = (.25)(1730N)$$

= 433 N

$$F_9 = 2450N$$
 $F_N = 1730N$
 $F_{1/2} = 1730N$
 $F_{5/2} = M_2F_N = (.20)(1730N)$
 $= 346N$

Fret =
$$F/I - F_C$$

ma = $F/I - F_C$
a = $F/I - F_C$
m = $\frac{1730 \,\text{N} - 346 \,\text{N}}{250.0 \,\text{kg}}$
= $\frac{5.54 \,\text{m/s}^2}{1}$

$$F_{\text{net}} = ma = (10.0 kg)(2.5 M/s^2)$$

= 25.0 N

$$F_{Ret} = F_{II} - F_{Ret}$$

$$F_{P} = F_{II} - F_{Ret} = 39.9N - 25.0N$$

$$= 14.9N$$

$$F_{F} = \mu_{K} F_{N}$$

$$M_{K} = \frac{F_{K}}{F_{N}} = \frac{14.9 \, N}{89.5 N} = \left[-17 \right]$$

$$a = \frac{E}{m} = \frac{20 \, \text{N}}{(3 \, \text{M})^2 243} = 4 \, \text{m/s}^2$$

acceleration of $2 kg = 4 m/s^2$ pushed by 3 kg $F = max = (2 kg)(4 m/s^2)$ = 8 N

2 kg pushed by F=8N ->

Produces equal + opposite force

[F-8N &]

$$a = \frac{E}{m} = \frac{36N}{(201914183)} = 1.5m/s^2$$

$$F = ma$$

= $(20 kg)(1.5 m/s^2)$
 $= 30 M$

$$\Delta y = 11t + 2at^{2}$$

$$\Delta y = 2at^{2}$$

$$t = \sqrt{\frac{2}{9}} \frac{\Delta y}{a} = \sqrt{\frac{7}{9} \cdot 80^{10}/3}$$

$$\frac{V_{iy} = 0}{V_{ix} = 10.0 \text{m/s}}$$

$$\frac{V_{iy} = 0}{V_{ix} = 10.0 \text{m/s}}$$

$$\frac{V_{iy} = 0}{V_{ix} = 10.0 \text{m/s}}$$

$$\Delta y = v_1 t + \frac{1}{2}at^2$$

$$\Delta y = \frac{1}{2}at^2$$

$$t = \sqrt{\frac{2(-50.0m)}{9.80m/s^2}}$$

$$= 3.19s$$

$$\Delta X = Vit + 204^{2}$$

 $\Delta X = Vit = (10.0 \text{ M/s})(3.195)$
=\[31.9 \text{ m}\]

$$a = v_f - v_i = 40 \text{ m/s} - 0 \text{ m/s} = 10 \text{ m/s}^2$$