Station 1

Complete the following chart on your sheet:

Symbol	Charge	Protons	Neutrons	Electrons	Atomic #	Mass #
	+2		5		4	
⁹² Zr ²⁺						
	0	47				108
¹⁸⁴ W				74		
	-3			10		14
Cr ⁶⁺	+6		28			

Station 1

Complete the following chart on your sheet:

Symbol	Charge	Charge Protons		Electrons	Atomic #	Mass #	
9 Be2+	+2	4	5	2	4	9	
⁹² Zr ²⁺	2+	40	52	38	40	92	
108 47Ag	О	47	61	47	47	108	
¹⁸⁴ W	0	74	110	74	74	184	
403-	-3	7	datume artista	10	eglen.	14	
Cr ⁶⁺	+6	24	28	18	24	52	

Label the following groups on the periodic table:

- Noble gases
- Transition metals
- Metalloids
- Alkaline earth metals
- Halogens
- Inner transition metals (lanthanides and actinides)
- Alkali metals

Draw the line separating metals from non-metals. On which side are the metals? Non-metals?

Fill in on your own sheet

Label the following groups on the periodic table:

- Noble gases
- Transition metals
- Metalloids
- Alkaline earth metals
- Halogens
- Inner transition metals (lanthanides and actinides)
- Alkali metals

Draw the line separating metals from non-metals. On which side are the metals? Non-metals?

Fill in on your own sheet

Atoms and the periodic table Review Stations

Station 3

left side of metals

Right side of Stair step = non note is + H

Write the F	ULL	electron	configui	rations	for:
-------------	-----	----------	----------	---------	------

- 1. Molybdenum
- 2. Lead
- 3. Magnesium
- 4. Krypton

Write the short cut (using noble gases) electron configurations for:

- 5. Technetium
- 6. Iridium
- 7. Mendelevium
- 8. Bismuth

Write the FULL electron configurations for:

- 1. Molybdenum \s^2 252 2p6352 3p6452 3010 4p4582 4014
- 2. Lead 1522522p63523p64523d104p65524d105p66525d14f145096p2
- 3. Magnesium $15^2 25^2 20^6 35^2$
- 4. Krypton \52252206353664523d10406

Write the short cut (using noble gases) electron configurations for:

- 5. Technetium [Kv]5574d5
- 6. Iridium [Xe]65252148145016
- 7. Mendelevium [Rn]75 6d 50"
- 8. Bismuth [xe]65 31 46 14 54 96 p5

How many valence electrons are in:

- 1. Gallium
- 2. Strontium
- 3. lodine
- 4. Phosphorus
- 5. Rubidium
- 6. Xenon
- 7. Selenium
- 8. Carbon .

How many valence electrons are in:

- 1. Gallium
- 2. Strontium 2
- 3. Iodine 7
- 4. Phosphorus 5
- 5. Rubidium \
- 6. Xenon 🔎
- 7. Selenium 💪
- 8. Carbon 4

Write equations for the following nuclear reactions:

- 1. Bismuth-214 undergoes alpha and gamma decay.
- 2. Krypton-87 emits a beta particle.
- 3. Boron-8 undergoes positron emission.
- 4. The nucleus of a curium-239 atom captures an electron.

Write equations for the following nuclear reactions:

- 1. Bismuth-214 undergoes alpha and gamma decay.
- 2. Krypton-87 emits a beta particle.
- 3. Boron-8 undergoes positron emission.
- 4. The nucleus of a curium-239 atom captures an electron.

- 1. A beaker is filled with 27.1 g of zinc-71. The half-life of zinc-71 is 2.45 minutes. After 17.2 minutes, how much of the sample is still zinc?
- 2. A sample of uranium-239 is left to decay over a period of 2.35 hours. If the half-life of U-239 is 23.45 minutes and 3.21 g of a sample remains, what was the original mass of the sample?
- 3. Optional Carbon dating is used to estimate the age of bones and artifacts. The half-life of carbon-14 is 5730 years. An average human contains 2.0x10⁻⁸ g of C-14. If an ancient mummy has 7.8x10⁻¹¹ g of C-14, how old is the mummy?

- 1. A beaker is filled with 27.1 g of zinc-71. The half-life of zinc-71 is 2.45 minutes. After 17.2 minutes, how much of the sample is still zinc?
- 2. A sample of uranium-239 is left to decay over a period of 2.35 hours. If the half-life of U-239 is 23.45 minutes and 3.21 g of a sample remains, what was the original mass of the sample?
- 3. Optional Carbon dating is used to estimate the age of bones and artifacts. The half-life of carbon-14 is 5730 years. An average human contains 2.0x10-8 g of C-14. If an ancient mummy has 7.8x10-11 g of C-14, how old is the mummy?

$$\frac{0}{2.45 \text{ min}} = 7 \text{ half lives}$$

$$\frac{27.19}{27} = (.2129)$$

$$\frac{27.19}{2^{7}} = (-2129)$$
 OR $\frac{27.19}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$

3
$$\frac{2.0 \cdot 10^{-89}}{7.8 \cdot 10^{-8}} = 2^{\times} \times = 8 \text{ half lives}$$

1. Complete this chart on your sheet.

Scientist	Describe atomic model	What are some of the key points in this atomic model?
Dalton		
Thomson		
Rutherford		
Bohr		
Schrödinger		

- 2. What sublevels can energy level 1 have? Energy level 2? 3? 4? 5?
- 3. How many different orbitals (boxes, orientations) can each sublevel have?
- 4. How many electrons can one orbital (box) contain?

1. Complete this chart on your sheet.

Scientist	Describe atomic model	What are some of the key points in this atomic model?
Dalton	5phere	atoms indivision confi
Thomson	(Blum Pudding)	electrons were addit
Rutherford		michous in orate,
Bohr	0	planetary model.
Schrödinger		e-cloud, energy levels

2.	What s	ublevel	s can e	nergy level 1											
				15	25	20	35.	30,3	o i	45,41	n,4d	144	55,50	Sole	56
3.	How ma	any difi	ferent o	orbitals (boxe	s, orie:	ntations)	can ea	ich sub	olevel	have?					
	S	has	Ove	orbital (OV.	(sox)	7	han	3	d	has	5	<u></u>	hows	reflec

4. How many electrons can one orbital (box) contain?

2

think back to filling in boxes w/ amous