Molarity Review

Examples:

$$
\text { Molarity }=\frac{\text { moles }}{\text { Liters }}
$$

1. What is the molarity of 350.0 mL solution that contains 50.00 grams of sodium hydroxide?

To solve:

Turn 350.0 mL to L :

(x) $\mathrm{L}=$| 350.0 mL | 1 L |
| :--- | :--- |$=\quad 0.3500 \mathrm{~L}$

Turn 50.00 g of sodium hydroxide into moles:

$$
\begin{array}{l|l}
(x) \mathrm{mol}=50.00 \mathrm{~g} \mathrm{NaOH} & 1 \mathrm{~mol} \\
\hline & 40.00 \mathrm{~g}
\end{array} \quad=\quad 1.250 \mathrm{~mol}
$$

Now calculate molarity:

$$
\mathrm{M}=\underset{\mathrm{L}}{\mathrm{~mol}} \frac{1.250 \mathrm{~mol}}{0.3500 \mathrm{~L}}=3.571 \mathrm{M}
$$

2. How many grams of sodium hydroxide are needed to make 50.00 mL of a 0.40 M solution? (Remember that $0.40 \mathrm{M}=\frac{0.40 \mathrm{~mol}}{1 \mathrm{~L}}$; which has 2 SF)

To solve:

One problem method:

Another method:

Solve for moles:

$$
\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{~L}} \quad 0.40 \mathrm{M}=\overline{\mathrm{X} \mathrm{~mol}} \overline{0.0500 \mathrm{~L}} \quad \mathrm{X} \mathrm{~mol}=0.020 \mathrm{~mol}
$$

Now solve for g:
$(x) \mathrm{g}=0.020 \mathrm{~mol}$

40.00 g
1 mol

$=\quad 0.80 \mathrm{~g}$

