Molarity Tutorial

Examples:

$$
\text { Molarity }=\frac{\text { moles }}{\text { Liters }}
$$

1. What is the molarity of 350.0 mL solution that contains 50.00 grams of sodium hydroxide?

To solve:

Turn 350.0 mL to L :

| (x) $\mathrm{L}=350.0 \mathrm{~mL}$ | 1 L |
| :--- | :--- |$=$| 1000 mL |
| :--- |$\quad 0.3500 \mathrm{~L}$

Turn 50.00 g of sodium hydroxide into moles:

$$
\begin{array}{l|l}
(x) \mathrm{mol}=50.00 \mathrm{~g} \mathrm{NaOH} & 1 \mathrm{~mol} \\
\hline & 40.00 \mathrm{~g}
\end{array}
$$

Now calculate molarity:

$$
\mathrm{M}=\underset{\mathrm{L}}{\mathrm{~mol}}=\frac{1.250 \mathrm{~mol}}{0.3500 \mathrm{~L}}=3.571 \mathrm{M}
$$

2. How many grams of sodium hydroxide are needed to make 50.00 mL of a 0.40 M solution? (Remember that $0.40 \mathrm{M}=\frac{0.40 \mathrm{~mol}}{1 \mathrm{~L}}$; which has 2 SF)

To solve:

One problem method:

Another method:

Solve for moles:

$$
\mathrm{M}=\frac{\mathrm{mol}}{\mathrm{~L}} \quad 0.40 \mathrm{M}=\overline{\mathrm{X} \mathrm{~mol}} \overline{0.0500 \mathrm{~L}} \quad \mathrm{X} \mathrm{~mol}=0.020 \mathrm{~mol}
$$

Now solve for g:
$(x) \mathrm{g}=0.020 \mathrm{~mol}$

| 40.00 g |
| :--- | :--- |
| 1 mol |

$=0.80 \mathrm{~g}$

$$
M_{1} V_{1}=M_{2} V_{2}
$$

You can add water to a solution to create a more dilute solution.

Examples:

1. Water is added to 100.0 mL of 5.00 M NaCl . If the new volume is 250.0 mL , what is the dilute concentration?

To solve:

$$
\begin{array}{ll}
\mathrm{M}_{1}=5.00 \mathrm{M} & \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1}=100.0 \mathrm{~mL} & (5.00 \mathrm{M})(100.0 \mathrm{~mL})=\left(\mathrm{M}_{1}\right)(250.0 \mathrm{~mL}) \\
\mathrm{M}_{2}=? & \mathrm{M}_{2}=2.00 \mathrm{M} \\
\mathrm{~V}_{2}=250.0 \mathrm{~mL} &
\end{array}
$$

2. How can you make 500.0 mL of a 1.00 M HCl solution from 12.1 M concentrated HCl ?

To solve:

$$
\begin{array}{ll}
M_{1}=1.00 \mathrm{M} & \mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \\
\mathrm{~V}_{1}=500.0 \mathrm{~mL} & (1.00 \mathrm{M})(500.0 \mathrm{~mL})=(12.1 \mathrm{M})\left(\mathrm{V}_{2}\right) \\
\mathrm{M}_{2}=12.1 \mathrm{M} & \mathrm{~V}_{2}=41.3 \mathrm{~mL}
\end{array}
$$

$\mathrm{V}_{2}=$?
Use a pipet to transfer 41.3 mL of 12.1 M HCl to a 500.0 mL volumetric flask (that already contains some distilled water for safety purposes). Add more distilled water until the total volume reaches 500.0 mL (on the line).

