Molarity Tutorial

Molarity = $\frac{moles}{Liters}$

Examples:

1. What is the molarity of 350.0 mL solution that contains 50.00 grams of sodium hydroxide?

To solve:

Turn 350.0 mL to L:

(x) L = 350.0 mL	1 L	=	0.3500 L
	1000 mL		

Turn 50.00 g of sodium hydroxide into moles:

(x) mol = 50.00 g NaOH 1 mol = 1.250 mol 40.00 g

Now calculate molarity:

 $\begin{array}{c} M = mol \\ L \end{array} = \underbrace{1.250 \ mol}_{0.3500 \ L} = \underbrace{3.571 \ M}_{0.3500 \ L} \end{array}$

2. How many grams of sodium hydroxide are needed to make 50.00 mL of a 0.40 M solution? (*Remember that 0.40 M* = $\frac{0.40 \text{ mol}}{1 \text{ L}}$; which has 2 SF)

To solve:

One problem method:

(x) g = 50.00 mL	1 L	0.40 mol	40.00 g	=	0.80 g
	1000 mL	1L	1 mol		
Another method:					
Solve for moles:					
$M = \frac{mol}{L} \qquad 0.40$	M = X mol 0.0500 L	X mol = 0.020) mol		
Now solve for g:					
(x) g = 0.020 mol	40.00 g	= 0.80	g		
	1 mol				

$$\mathsf{M}_1\mathsf{V}_1=\mathsf{M}_2\mathsf{V}_2$$

You can add water to a solution to create a more dilute solution.

Examples:

1. Water is added to 100.0 mL of 5.00 M NaCl. If the new volume is 250.0 mL, what is the dilute concentration?

To solve:

M ₁ = 5.00 M	$M_1V_1 = M_2V_2$	
V ₁ = 100.0 mL	(5.00 M)(100.0 mL) = (M ₁)(250.0 mL)	
M ₂ = ?	M ₂ = 2.00 M	
V ₂ = 250.0 mL		,

2. How can you make 500.0 mL of a 1.00 M HCl solution from 12.1 M concentrated HCl?

To solve:

M ₁ = 1.00 M	$M_1V_1 = M_2V_2$	
V ₁ = 500.0 mL	(1.00 M)(500.0 mL) = (12.1 M)(V ₂)	
M ₂ = 12.1 M	V ₂ = 41.3 mL	
V ₂ = ?		,

Use a pipet to transfer 41.3 mL of 12.1M HCl to a 500.0 mL volumetric flask (that already contains some distilled water for safety purposes). Add more distilled water until the total volume reaches 500.0 mL (on the line).

