Momentum

Objectives

- Describe momentum
- Demonstrate knowledge of the impulsemomentum theorum
- Solve conservation of momentum problems
- Car activity

Momentum

- When do you observe momentum?
- How can you change momentum?
- $p=m v$

Collisions

- Elastic collisions
- Bounce apart, kinetic energy is unchanged
- Inelastic collisions
- Stick together, kinetic energy is changed

Conservation of momentum

- Conservation of momentum-the pin a closed, isolated system does not change
- m does not change
- No outside forces
- p before $=\mathrm{p}$ after

Collisions

- Elastic collisions
- Examples?
- Inelastic collisions
- Examples?

Collision Problem 1—DON'T SOLVE YET!

- A 1000-kg VW bug is stopped in traffic when it is rear-ended by a $35000-\mathrm{kg}$ semi traveling $12 \mathrm{~m} / \mathrm{s}$. If the two stick together, how fast do the two move together immediately after the collision?

Collision Problem 2-DON'T SOLVE YET!

- This time the 1000-kg bug is booking at 27 m / s heading north. The $35000-\mathrm{kg}$ semi is traveling at $30 \mathrm{~m} / \mathrm{s}$ north when it rearends the VW. What is the velocity of the bug after impact? (Assume an elastic collision and the truck's final velocity is 29 m / s)

Collisions

- Elastic collisions

- Bounce apart, kinetic energy is unchanged
- $m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{1}{ }^{\prime}+m_{2} v_{2}{ }^{\prime}$
- Inelastic collisions
- Stick together, kinetic energy is changed
- $m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) v_{f}$

Collision Problem 1—SOLVE

- A 1000-kg VW bug is stopped in traffic when it is rear-ended by a $35000-\mathrm{kg}$ semi traveling $12 \mathrm{~m} / \mathrm{s}$. If the two stick together, how fast do the two move together immediately after the collision? $12 \mathrm{~m} / \mathrm{s}$

Collision Problem 2—SOLVE

- This time the $1000-\mathrm{kg}$ bug is booking at 27 m / s heading north. The $35000-\mathrm{kg}$ semi is traveling at $30 \mathrm{~m} / \mathrm{s}$ north when it rearends the VW. What is the velocity of the bug after impact? (Assume an elastic collision and the truck's final velocity is 29 $\mathrm{m} / \mathrm{s}) 62 \mathrm{~m} / \mathrm{s}$

Collision Problem 3

- The $1000-\mathrm{kg}$ VW is traveling south on I-25 at $25 \mathrm{~m} / \mathrm{s}$. The semi is driving at $30 \mathrm{~m} / \mathrm{s}$ north when it crosses the median. What is the resultant velocity if this is an inelastic collision? $28.5 \mathrm{~m} / \mathrm{s}$

Collision Problem 4

- You try to jump from a motionless canoe to the dock. You have a mass of 75.0 kg and the canoe is 50.0 kg . If you leap with a velocity of $3.0 \mathrm{~m} / \mathrm{s}$, with what speed does the canoe move away? $4.5 \mathrm{~m} / \mathrm{s}$ away from you

Impulse-Momentum

- Impulse $=\mathrm{F} \Delta \mathrm{t}$
- $F \Delta t=m \Delta v$

Baseball hit

- Baseball hitting wall

Collision Problem 5

- Tom the (75 kg) inept but resourceful astronaut forgets to leash himself to the space shuttle during his spacewalk. He is holding a tool kit. To get back, he throws a 2.0 kg hammer away from the space shuttle with a velocity of $5 \mathrm{~m} / \mathrm{s}$. What is his velocity (magnitude and direction)? $1.3 \mathrm{~m} / \mathrm{s}$ opposite direction from hammer

Tennis ball hit

- Tennis ball hitting racket video

Just for fun

- Just for fun

Force-time graphs

- How would you calculate impulse?
- How would you calculate the change in velocity?

Impulse Problem 6

- A batter hits a fastball. The 145 g ball is thrown with a velocity of $38 \mathrm{~m} / \mathrm{s}$ and clears the outfield fence with a velocity of $52 \mathrm{~m} / \mathrm{s}$. If the ball is in contact with the bat for $3.0 \times 10^{-4} \mathrm{~s}$, with what force does the batter need to swing? 43500 N

7

An object has force applied to it in a constant direction. The graph shows how the force varies with time. If the object has a mass of 5.0 kg , what is its change in velocity over the time the force is applied?

Graph Problem 8

The graph shows the net force applied on a 0.15 kg object over a 3.0 s time interval. (a) What is the average force applied to the object over the 3.0 seconds? (b) What is the impulse? (c) What is its change in velocity?

Impulse Problem 9

- A 60.0 kg person is moving at $25 \mathrm{~m} / \mathrm{s}$ in a car when it hits a wall and comes to a stop in 0.20 seconds. What is the average force on the person? 7500 N

