Other conversions/dimensional analysis practice

1. Jacques, the speeding Canadian, gets pulled over in the US. His speedometer reads 120 $\mathrm{km} /$ hour. How fast is he going in $\mathrm{ft} / \mathrm{sec}$? $(0.305 \mathrm{~m}=1 \mathrm{ft})$
2. Light travels at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How many miles/hour is this?
3. A swimming pool measures $2.0 \mathrm{~m} \times 25.0 \mathrm{~m} \times 15.0 \mathrm{~m}$. What is the volume of the pool in m^{3} ? $\mathrm{In} \mathrm{cm}^{3}$? $\mathrm{In} \mathrm{km}{ }^{3}$?
4. Chatfield reservoir holds $0.033 \mathrm{~km}^{3}$ of water. How many gallons is this? $\left(1 \mathrm{~cm}^{3}=1 \mathrm{~mL}\right.$, 1 gallon $=3.785 \mathrm{~L}$)
5. The density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this to $\mathrm{kg} / \mathrm{dm}^{3}$.
6. A pressure washer might have a nozzle pressure of 500 pounds $/ \mathrm{in}^{2}$. Convert this to $\mathrm{kg} / \mathrm{m}^{2} .(454 \mathrm{~g}=1$ pound, $2.54 \mathrm{~cm}=1 \mathrm{in}$)

Other conversions/dimensional analysis practice

1. Jacques, the speeding Canadian, gets pulled over in the US. His speedometer reads 120 $\mathrm{km} / \mathrm{hour}$. How fast is he going in $\mathrm{ft} / \mathrm{sec}$? $(0.305 \mathrm{~m}=1 \mathrm{ft}) 110 \mathrm{ft} / \mathrm{s}$
2. Light travels at $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. How many miles $/$ hour is this? $6.7 \times 10^{8} \mathrm{mi} / \mathrm{hr}$
3. A swimming pool measures $2.0 \mathrm{~m} \times 25.0 \mathrm{~m} \times 15.0 \mathrm{~m}$. What is the volume of the pool in m^{3} ? $\mathrm{In} \mathrm{cm}^{3}$? In km^{3} ? $750 \mathrm{~m}^{3}, 7.5 \times 10^{8} \mathrm{~cm}^{3}, 7.5 \times 10^{-7} \mathrm{~km}^{3}$
4. Chatfield reservoir holds $0.033 \mathrm{~km}^{3}$ of water. How many gallons is this? $\left(1 \mathrm{~cm}^{3}=1 \mathrm{~mL}\right.$, 1 gallon $=3.785 \mathrm{~L}$) 8.7×10^{9} gal
5. The density of water is $1.00 \mathrm{~g} / \mathrm{cm}^{3}$. Convert this to $\mathrm{kg} / \mathrm{dm}^{3} .1 .00 \mathrm{~kg} / \mathrm{dm}^{3}$
6. A pressure washer might have a nozzle pressure of 500 pounds $/ \mathrm{in}^{2}$. Convert this to $\mathrm{kg} / \mathrm{m}^{2}$. $(454 \mathrm{~g}=1$ pound, $2.54 \mathrm{~cm}=1 \mathrm{in}) 4 \times 10^{5} \mathrm{~kg} / \mathrm{m}^{2}$
