Other conversions/dimensional analysis practice

- 1. Jacques, the speeding Canadian, gets pulled over in the US. His speedometer reads 120 km/hour. How fast is he going in ft/sec? (0.305 m = 1 ft)
- 2. Light travels at 3.0×10^8 m/s. How many miles/hour is this?
- 3. A swimming pool measures 2.0 m x 25.0 m x 15.0 m. What is the volume of the pool in m^3 ? In cm³? In km³?
- 4. Chatfield reservoir holds 0.033 km³ of water. How many gallons is this? (1 cm³ = 1 mL, 1 gallon = 3.785 L)
- 5. The density of water is 1.00 g/cm³. Convert this to kg/dm³.
- 6. A pressure washer might have a nozzle pressure of 500 pounds/in². Convert this to kg/m^2 . (454 g = 1 pound, 2.54 cm = 1 in)

Other conversions/dimensional analysis practice

- 1. Jacques, the speeding Canadian, gets pulled over in the US. His speedometer reads 120 km/hour. How fast is he going in ft/sec? $(0.305 \text{ m} = 1 \text{ ft}) \frac{110 \text{ ft/s}}{110 \text{ ft/s}}$
- 2. Light travels at 3.0×10^8 m/s. How many miles/hour is this? 6.7×10^8 mi/hr
- 3. A swimming pool measures 2.0 m x 25.0 m x 15.0 m. What is the volume of the pool in m³? In cm³? In km³? 750 m^3 , $7.5 \times 10^8 \text{ cm}^3$, $7.5 \times 10^{-7} \text{ km}^3$
- Chatfield reservoir holds 0.033 km³ of water. How many gallons is this? (1 cm³ = 1 mL, 1 gallon = 3.785 L) 8.7x10⁹ gal
- 5. The density of water is 1.00 g/cm³. Convert this to kg/dm³. 1.00 kg/dm³
- 6. A pressure washer might have a nozzle pressure of 500 pounds/in². Convert this to kg/m^2 . (454 g = 1 pound, 2.54 cm = 1 in) $4x10^5 kg/m^2$