Percent Composition and Chemical Formulas

Objectives

- Determine the percent composition by mass of elements in a compound
- Differentiate between empirical and molecular formulas
- Calculate the empirical and molecular formulas given percentages

Percent Composition

- Mass of element x 100

Mass of cmpd

- If a 13.60 g sample of magnesium oxide is decomposed, 5.40 g of oxygen is obtained.
- What is the mass of Mg?
- Calculate the percent composition of each element.

Percent Composition

- Mass of element x 100

Mass of cmpd

- If a 13.60 g sample of magnesium oxide is decomposed, 5.40 g of oxygen is obtained.
- What is the mass of Mg? 8.20 g
- Calculate the percent composition of each element. O: 39.7\%; Mg: 60.3\%
- If no numbers are given, use the mass in one mole (molar masses)
- \#1: Calculate the percent composition of potassium permanganate, KMnO_{4}.

K: 24.74\%
Mn: 34.76\%
O: 40.50\%

Calculating mass of element

- Problem \#1: What is the percentage of carbon in CO_{2} ?
- Problem \#2: How many grams of carbon are in 25 g of CO_{2} ?

Calculating mass of element

- Problem \#1: What is the percentage of carbon in CO_{2} ?

$$
27.29 \% \text { C }
$$

- Problem \#2: How many grams of carbon are in 25 g of CO_{2} ?
6.8 g C

Chemical Formulas

- Molecular formula-the actual, chemical formula
- Empirical formula-the simplified version of the molec formula
- Sometimes molec formulas can't be simplified
- Molec: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
- Emp: $\mathrm{CH}_{2} \mathrm{O}$
- What molecular formulas can you create from:
- CH
- CH_{2}

Determining Empirical Formulas

A compound contains 75\% carbon and 25\% hydrogen. Determine the empirical formula.

1. Turn percentage into grams
$75 \% \mathrm{C} \rightarrow 75 \mathrm{~g} \mathrm{C}$
$25 \% \mathrm{H} \rightarrow 25 \mathrm{~g} \mathrm{H}$
2. Turn grams into moles
$75 \mathrm{~g} \mathrm{C} \rightarrow 6.2$ moles C
$25 \mathrm{~g} \mathrm{H} \rightarrow 25$ moles H
3. Divide by smallest \# of moles
6.2 moles $\mathrm{C}=1.00$
6.2

25 moles $\mathrm{H}=4.03$
6.2
4. Use whole numbers for empirical formula CH_{4}
Only round when the number is CLOSE

- Calculate the empirical formula for a compound that is 67.6% mercury, 10.8% sulfur, and 21.6% oxygen.
- HgSO_{4}

Determining Molecular Formulas

- Multiply empirical formula by a whole number to get molecular formula.
- Molar mass of molec formula

Molar mass of empirical formula

- A compound has the empirical formula HO and a molar mass of $34.0 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?
$34.0 \mathrm{~g} / \mathrm{mol}=2$
$17.0 \mathrm{~g} / \mathrm{mol}$ $\mathrm{HO} \times 2 \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}$
- Calculate the molecular formula of a compound whose molar mass is $60.0 \mathrm{~g} / \mathrm{mol}$ and empirical formula is $\mathrm{CH}_{4} \mathrm{~N}$.
- $\mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2}$

