Periodic Table and Naming Chapter 2
 Sections 5-9
 AP Chemistry

Periodic Table

Naming Compounds

* There are two major types of chemical compounds: Organic (usually contain C, H and O) and inorganic
* Inorganic naming can be broken into four categories x Ionic Compounds
x Molecular Compounds
\because Acids and bases
x Hydrates

Periodic Table- Can you find these?

* Periods
* Groups/Families
* Metals
* Metalloids
* Non Metals
* Alkali Metals
* Alkaline Earth Metals
* Chalcogens
* Halogens
* Nobel Gases
- Diatomic Atoms
* Transition Metals
* Lanthanides Series
* Actinides Series
* S Orbitals
* p Orbitals
* d Orbitals
* f Orbitals

Periodic Table- What's the trend?

* Metal Behavior
* Electronegativity
* Atomic radii
* Ionic radii
* Reactivity
* REMEMBER: Vertical relationships are more apparent than horizontal relationships

Ionic Compounds

* Ionic compounds contain a cation and an anion
* Binary ionic compounds
× 2 elements
x End in -ide
x Transition metals need to have charge indicated using roman numerals except for.... ?
- NOTE: Older system of naming uses "-ous" and "-ic" ending like ferrous $\left(\mathrm{Fe}^{2+}\right)$ and ferric (Fe^{3+}) just like polyatomic ions *augmentation to your education*
* Ternary Compounds
$\because 3$ elements- usually contains a polyatomic ion

Common Polyatomic Ions-Page

- NH_{4}^{+}	* $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	* O^{2-}
- $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	* H^{-}	* $\mathrm{MnO}_{4}{ }^{-}$
- $\mathrm{CO}_{3}{ }^{2-}$	- $\mathrm{HCO}_{3}{ }^{-}$	- $\mathrm{O}_{2}{ }^{2-}$
- $\mathrm{ClO}_{3}{ }^{-}$	* $\mathrm{HPO}_{4}{ }^{2-}$	- $\mathrm{PO}_{4}{ }^{\text {- }}$
- $\mathrm{ClO}_{2}{ }^{-}$	* HSO_{4}^{-}	- $\mathrm{SO}_{4}{ }^{2-}$
- $\mathrm{CrO}_{4}{ }^{2-}$	* OH^{-}	* S^{2-}
- CN^{-}	$\bullet \mathrm{NO}_{3}{ }^{-}$	- $\mathrm{SO}_{3}{ }^{2-}$
* $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	- $\mathrm{NO}_{2}{ }^{-}$	- SCN^{-}

Practice

- $\mathrm{KH}_{2} \mathrm{PO}_{4}$
- $\mathrm{K}_{2} \mathrm{HPO}_{4}$
- $\mathrm{Li}_{2} \mathrm{CO}_{3}$
- $\mathrm{NH}_{4} \mathrm{NO}_{2}$
- NaSCN
- Cadmium Iodide
- Lead (III) hydroxide
- Cesium carbonate
- Iron (III) phosphate
* Mercury (I) Iodide

Important Note

* 9 Special elements
$¥ 7$ Diatomic elements
${ }_{8} \mathrm{~S}_{8}$
${ }_{x} \mathrm{P}_{4}$
* Allotropes
$\&$ One of two or more distinct forms of an element \& Example:
* Oxygen $\left(\mathrm{O}_{2}\right)$ and Ozone $\left(\mathrm{O}_{3}\right)$

Additions of Common lons- Pg 61

* Per-	-ate	+1 oxygen	ClO_{4}^{-}
*	-ate	Base	ClO_{3}^{-}
* Hypo-	-ite	-1 oxygen	ClO_{2}^{-}
*	-ite	-1 oxygen	ClO^{-}
	-ide	No oxygens	Cl^{-}
* Hydrogen -ate	add 1 hydrogen	HPO_{4}^{2-}	
* Can add 2 hydrogen, then becomes dihydrogen	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$		
* Thio-	-ate	add sulfur	SCN^{-}

Molecular Compounds

* Many molecular compounds are binary
\times Two nonmetals
x two elements on the right hand side of the stair step ladder
\times Hydrogen as well
* Naming Rules
x Prefix (omit mono)
\& Element
\times Prefix (always)
\approx Element with ending-ide

| Prefixes- Table 2.6 Pg 65 |
| :--- | :--- |
| 1. Mono |
| 2. Di |
| 3. Tri |
| 4. Tetra |
| 5. Penta |
| 6. Hexa |
| 7. Hepta |
| 8. Octa |
| 9. Nona |
| 10. Deca |

Practice

- Phosphorus pentafluoride
- Iodine heptafluroide
- Tetraphosphorus hexaoxide
- Boron trichloride
- Sulfur trioxide
- $\mathrm{N}_{2} \mathrm{O}_{4}$
- SiCl_{4}
- $\mathrm{P}_{4} \mathrm{O}_{10}$
- $\mathrm{Cl}_{2} \mathrm{O}_{7}$
- NF_{3}

Acids

* Acids can be described as a substance that yields a H^{+} ion when dissolved in water
* Two types: Binary acid and Oxoacids (ternary)
x Binary acids: 2 elements, hydro-anion-ic acid (HCl)
x Oxoacids acids- Acids that contain H, O and another element(central element)
- Remember...
x "-ic" acids come from "-ate"
x "-ous" acids come from "-ite"

Practice

- HBr
- HI
- HClO
- HClO_{2}
- HClO_{3}
- HClO_{4}
- Hydrocyanic acid
- Phosphoric acid
- Phosphorous acid
- Hypophosphorous acid

Hydrates

* Hydrates are compounds that have a specific number of water molecules attached to them.
* The purpose of this week's lab is to determine the formula of a hydrate
* Name these compounds following the same rules but at the end use the Greek prefix + hydrate

$$
\begin{aligned}
& \times \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& \times \mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O} \\
& \times \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

OXOACID $\xrightarrow[\mathrm{H}^{+} \text {ions }]{\text { Removal of all }}$ OXOANION

Lets look at an example with iodate ion IO_{3}^{-}

Bases

* A base can be described as a substance that yields a OH^{-}when dissolved in water
* Most bases are hydroxides
$\times \mathrm{NaOH}$
$\approx \mathrm{KOH}$
$\times \mathrm{Ba}(\mathrm{OH})_{2}$
* Another common base which is a molecular compound in the gaseous or liquid phase is NH_{3} $\propto \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{4} \mathbf{O H}$

Practice

* CaCO_{3}	* LiF
- $\mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	* PbCO_{3}
- $\mathrm{Ca}(\mathrm{OH})_{2}$	* $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
* $\mathrm{H}_{2} \mathrm{~S}$	* $\mathrm{H}_{2} \mathrm{O}_{2}$
* NaNO_{3}	* CuCrO_{4}
* HBrO	- $\mathrm{H}_{2} \mathrm{SO}_{4}$
* NH_{3}	* $\mathrm{Na}_{2} \mathrm{CO}_{3}$
* $\mathrm{P}_{4} \mathrm{~S}_{10}$	* NaCl

Practice

* Carbon dioxide
* Chloric acid
* Rubidium hydroxide
* Lithium sulfite
* Lead (II) oxide
* Copper (II) chloride
* Calcium hydrogen phosphate
* Hydroiodic acid
* Copper (I) cyanide
* Tetraphosphorus decasulfide
* Titanium (IV) Chloride
* Ammonium sulfate
* Barium chloride dihydrate
* Hyponitrous acid

