Periodic Table and Naming Chapter 2 Sections 5-9 **AP Chemistry**

Periodic Table- Can you find these?

- Periods
- * Nobel Gases
- Groups/Families
- * Diatomic Atoms

Metals

- * Transition Metals
- Metalloids
- * Lanthanides Series
- Non Metals
- * Actinides Series
- Alkali Metals
- * s Orbitals

Alkaline Earth Metals

- p Orbitals
- * Chalcogens
- * d Orbitals
- Halogens

- * f Orbitals

Periodic Table

Periodic Table- What's the trend?

- Metal Behavior
- Electronegativity
- * Atomic radii
- Ionic radii
- · Reactivity
- * REMEMBER: Vertical relationships are more apparent than horizontal relationships

Naming Compounds

- There are two major types of chemical compounds: Organic (usually contain C, H and O) and inorganic
- Inorganic naming can be broken into four categories
 - x Ionic Compounds
 - ⋈ Molecular Compounds
 - ★ Acids and bases

Ionic Compounds

- * Ionic compounds contain a cation and an anion
- * Binary ionic compounds
 - × 2 elements
 - × End in −ide
 - x Transition metals need to have charge indicated using roman numerals except for?
 - NOTE: Older system of naming uses "-ous" and "-ic" ending like ferrous(Fe²⁺) and ferric (Fe³⁺) just like polyatomic ions *augmentation to your education*
- * Ternary Compounds
 - x 3 elements- usually contains a polyatomic ion

ClO₄-

ClO₃-

SCN-

Common Polyatomic Ions-Page

- NH₄⁺
- ♦ H₂PO₄-
- ♦ O²⁻

- ♦ C₂H₃O₂-
- ♦ H⁻
- ♦ MnO₄

- ***** CO₃²⁻
- HCO₃-
- ***** O₂²-

- ♦ ClO₃⁻
- $\bullet \ \mathrm{HPO_4^{2-}}$
- ♦ PO₄3-

- * ClO₂-
- ♦ HSO₄-
- * SO₄²

- ♦ CrO₄²⁻
- ◆ OH⁻
- ♣ S²⁻

- ♠ CN⁻
- * NO₃-
- * SO₃²⁻

- ♦ Cr₂O₇²⁻
- NO₂⁻
- * SCN-
- * SCN

-ite -1 oxygen ClO₂⁻ Hypo- -ite -1 oxygen ClO⁻ -ide No oxygens Cl⁻ Hydrogen -ate add 1 hydrogen HPO₄⁻ Can add 2 hydrogen, then becomes dihydrogen H₂PO₄⁻

add sulfur

+1 oxygen

Additions of Common Ions- Pg 61

Base

Practice

- ♦ KH₂PO₄
- ♦ K₂HPO₄
- ♣ Li₂CO₃
- ♦ NH₄NO₂
- * NaSCN
- * Cadmium Iodide
- * Lead (III) hydroxide
- * Cesium carbonate
- * Iron (III) phosphate
- * Mercury (I) Iodide

Molecular Compounds

- * Many molecular compounds are binary
 - x Two nonmetals
 - 🗶 two elements on the right hand side of the stair step ladder
 - ⊭ Hydrogen as well
- * Naming Rules
- ★ Prefix (omit mono)
- A I I CHA (O

• Per-

Thio-

-ate

-ate

- ⊭ Element
- ★ Prefix (always)
- ★ Element with ending –ide

Prefixes- Table 2.6 Pg 65 1. Mono 2. Di 3. Tri 4. Tetra 5. Penta 6. Hexa 7. Hepta 8. Octa 9. Nona 10.Deca

Important Note

- * 9 Special elements
 - x 7 Diatomic elements
 - × Sg
 - $\approx P_{\perp}$
- * Allotropes
 - $\ensuremath{\,\varkappa\,}$ One of two or more distinct forms of an element
 - - * Oxygen (O2) and Ozone (O3)

Practice

- Phosphorus pentafluoride
- * Iodine heptafluroide
- * Tetraphosphorus hexaoxide
- Boron trichloride
- Sulfur trioxide
- ♦ N₂O₄
- ♦ SiCl₄
- ♠ P₄O₁₀
- * Cl₂O₇
- NF₃

Acids

- Acids can be described as a substance that yields a H⁺ ion when dissolved in water
- * Two types: Binary acid and Oxoacids (ternary)
 - ★ Binary acids: 2 elements, hydro-anion-ic acid (HCl)
 - ★ Oxoacids acids- Acids that contain H, O and another element(central element)
 - Remember...
 - x "-ic" acids come from "-ate"
 - x "-ous" acids come from "-ite"

Practice

- HBr
- HI
- * HClO
- HClO₂
- ♦ HClO₂
- ♦ HClO₄
- Hydrocyanic acid
- Phosphoric acid
- Phosphorous acid
- * Hypophosphorous acid

Bases

- A base can be described as a substance that yields a OH-when dissolved in water
- * Most bases are hydroxides
 - x NaOH
 - ж КОН
- Another common base which is a molecular compound in the gaseous or liquid phase is NH₃
 - $\times NH_3 + H_2O \leftrightarrow NH_4OH$

Hydrates

- Hydrates are compounds that have a specific number of water molecules attached to them.
- The purpose of this week's lab is to determine the formula of a hydrate
- Name these compounds following the same rules but at the end use the Greek prefix + hydrate
 - ¥ BaCl₂ 2H₂O
 - ⊭ LiCl H_oO
 - $\bowtie \mathrm{MgSO_4} \bullet 7\mathrm{H_2O}$

Practice

- * CaCO₃
- * LiF
- * Sr(NO₃)₂ 4H₂O
- ♦ PbCO₃
- * Ca(OH)₂
- Hg₂Cl₂

♦ H₂S

- ♦ H₂O₂
- * NaNO₃
- ◆ CuCrO₄
- HBrO
- ♦ H₂SO₄

♦ NH₂

Na₂CO₃ • 7H₂O

₱ P₄S₁0

NaCl

Practice

- Carbon dioxide
- * Chloric acid
- * Rubidium hydroxide
- * Lithium sulfite
- * Lead (II) oxide
- * Copper (II) chloride
- Calcium hydrogen phosphate

- Hydroiodic acid
- * Copper (I) cyanide
- Tetraphosphorus decasulfide
- * Titanium (IV) Chloride
- * Ammonium sulfate
- Barium chloride dihydrate
- Hyponitrous acid