
Polyatomic ions

Name	Formula
Ammonium	$\mathrm{NH_4}^+$
Hydronium	H_3O^+
Acetate	$C_2H_3O_2$ (CH ₃ COO)
Cyanide	CN ⁻
Thiocyanate	SCN ⁻
Hydroxide	OH.
Perchlorate	ClO ₄
Chlorate	C1O ₃ -
Chlorite	C1O ₂ -
Hypochlorite	C10 ⁻
Iodate	IO_3
Bromate	BrO ₃ -
Nitrate	NO ₃ -
Nitrite	NO ₂ -
Permanganate	MnO ₄
Carbonate	CO ₃ ² -
Hydrogen carbonate (bicarbonate)	HCO ₃ -
Sulfate	SO ₄ ²⁻
Hydrogen sulfate (bisulfate)	HSO ₄
Sulfite	SO ₃ ² -
Chromate	CrO ₄ ²⁻
Dichromate	$\operatorname{Cr_2O_7}^{2-}$
Peroxide	O_2^{2-}
Phosphate	PO ₄ ³⁻
Hydrogen phosphate	HPO ₄ ² -
Dihydrogen phosphate	$H_2PO_4^-$

Activity series for single replacement

Solubility rules for ionic compounds in water

Ammonium, alkali metals	Most salts containing ammonium (NH ₄ ⁺) and alkali metal ions (Li ⁺ , Na ⁺ , K ⁺ , Cs ⁺ , Rb ⁺) are soluble.
Nitrates	Nitrate (NO ₃) salts are soluble.
Halides	Most chloride, bromide, and iodide salts are soluble. Exceptions include salts containing Ag^+ , Pb^{2+} , and Hg_2^{2+} .
Sulfates	Most sulfate are soluble. Exceptions include BaSO ₄ , PbSO ₄ , Hg ₂ SO ₄ , and CaSO ₄ .
Hydroxides	Most hydroxide salts are insoluble. Important soluble hydroxides are NaOH and KOH. The compounds Ba(OH) ₂ , Sr(OH) ₂ , and Ca(OH) ₂ are slightly soluble.
Sulfides, carbonates, chromates, and phosphates	Most sulfide (S ² -), carbonate (CO_3^2 -), chromate (CrO_4^2 -), and phosphate (PO_4^3 -) salts are insoluble.