Quantum Mechanical Model Electron Configurations

Objectives

- Understand how electrons are arranged in the quantum mechanical model of the atom
- Be able to write electron configurations

Quantum Mechanical Model of the Atom

- Electrons have different energies, like in Bohr model
- Electrons cannot exist between energy levels
 - Ladder

Quantum Mechanical Model of the Atom

- The electron is found inside a blurry "electron cloud"
- An area where there is a *chance* of finding an electron.
- Think of fan blades

Electrons in Orbitals

Aufbau principle: e⁻ completely occupy lowest levels first

Electrons in Orbitals

- Pauli exclusion principle: Each orbital can only contain 2 e⁻ at most
 - e⁻ in same orbital have opposite spins ↑↓

Electrons in Orbitals

- Hund's rule: e⁻ go into separate orbitals with same spin until forced to double up
- Think boys in hotel beds

Electron Configurations

- Determine the number of electrons in:
 - Na
 - Zn
 - Mo
- Using boxes worksheet, draw in the arrows (e⁻) for the elements above

Now write the electron configuration out
Na: 1s²2s²2p⁶3s¹
Zn:
Mo:
Can also use your periodic table to determine electron configurations

1 H	2 He	1																
1.00 ⁵ 3	04 4005 4											5	6	7	8	9	10	
Li	Be											B	C	N	0	F	Ne	
11	1 9001215	1										13	14	15	16	17	18	
Na	Mg											Al	Si	P	S XALA	Cl	Ar	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
K	- Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	
RE	Sr Sr Stores	Ytrian	Zr	Nb Nettar	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn Tn	Sb	Te	L	Xe	
55.46	56	57	91.224	73	74	(96) 75	76	77	78	79	80	81	82	83	84	85	86	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
132.92	545 137.32 88	138,9355	138.49	105	183.54	165.227	199.22	102.217	110	111	200.99	264,5833	397.2	204.59038	12075	610	62224	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	110				114					
(223	0 (226)	(227)	(201)	(262)	(263)	(262)	(265)	(206)	(209)	(272)	(277)							
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
				90	91	92	93	156.36 94	95	157.25 96	97	98	99	100	168,93421	102	103	
				Th 332.0351	Pa	U 256.00PS	Np (237)	Pu (244)	Am	Cm (247)	Bk (247)	Cf (251)	Es.	Fm (255)	Md Maircan	No	Lr CET	
			-	-														
			1000		-													7

Use your periodic table to write the electron configs for:

- Ag
- Te
- ۰F
- Ba

Noble gas abbreviation

Start at noble gas

- Abbreviation for Os:
 - Start at noble gas just before • [Xe]
 - Continue e⁻ configuration • [Xe]6s²5d¹4f¹⁴5d⁴
- Now try mercury, tin, and terbium