Quiz 1 Practice—Fundamentals of Chemistry

Scientific notation: Put the following in correct scientific notation

1. 56000000000
2. 0.00098
3. 0.198765

Scientific notation: Answer each in correct scientific notation and with correct SF:
4. $\left(7.6 \times 10^{-11}\right)\left(6.1 \times 10^{9}\right)$
5. $\frac{3.58 \times 10^{-12}}{6.0 \times 10^{8}}$
6. $8.9 \times 10^{7}-2.1 \times 10^{5}$
7. $3.29 \times 10^{4}+1.21 \times 10^{5}$
8. $\left(9.8 \times 10^{-34}\right)\left(7 \times 10^{14}\right)$
9. $\frac{5.6 \times 10^{8}}{3.19 \times 10^{12}}$

Significant figures: Determine the number of sig figs in the following numbers:
10.608 cm
11. 200 kg
12. 0.00700 m
13. 310.000000 pg

Sig figs: Answer the following calculations with the correct units and sig figs:
14. $4.5 \mathrm{~m} * 3.00 \mathrm{~m}$
15. $8.700 \mathrm{~cm} / 3.2 \mathrm{~cm}$
16. $7.80 \mathrm{~m}+4 \mathrm{~m}+78.2 \mathrm{~m}$
17. $0.64 \mathrm{~mm}-4.3 \mathrm{~mm}-0.200 \mathrm{~mm}$

Conversions (show all work with units!):
18. How many micrograms are in 45.6 kilograms?
19. How many meters are in 1050 cm ?
20. Convert 35.38 mL to L .
21. How many inches are in 4.5×10^{-4} miles? ($5280 \mathrm{ft}=1 \mathrm{mi}$)
22. If I drive at $45 \mathrm{mi} / \mathrm{hr}$, how many minutes will it take me to drive 60 miles?
23. How many seconds are in one century? (1 century = 100 years, 1 year $=365$ days)

Measurement: Practice measuring different objects with:

24. Graduated cylinders
25. Rulers
26. Triple beam balance

Precision, accuracy, and observations
27. Describe the picture at right qualitatively and quantitatively.
28. Three different students collected the following data:

	Student A	Student B	Student C
Trial 1	$1.54 \mathrm{~g} / \mathrm{cm}^{3}$	$1.40 \mathrm{~g} / \mathrm{cm}^{3}$	$1.70 \mathrm{~g} / \mathrm{cm}^{3}$
Trial 2	$1.60 \mathrm{~g} / \mathrm{cm}^{3}$	$1.68 \mathrm{~g} / \mathrm{cm}^{3}$	$1.69 \mathrm{~g} / \mathrm{cm}^{3}$
Trial 3	$1.57 \mathrm{~g} / \mathrm{cm}^{3}$	$1.45 \mathrm{~g} / \mathrm{cm}^{3}$	$1.71 \mathrm{~g} / \mathrm{cm}^{3}$
Average	$1.57 \mathrm{~g} / \mathrm{cm}^{3}$	$1.51 \mathrm{~g} / \mathrm{cm}^{3}$	$1.70 \mathrm{~g} / \mathrm{cm}^{3}$

The accepted value should be $1.59 \mathrm{~g} / \mathrm{cm}^{3}$. Discuss each student's accuracy and precision.

