Particle Representations

\square Draw 10 molecules for each:
\square Solid

- Liquid
-Gas

SOLIDS, LIQUIDS, AND GASES (BUT MOSTLY GASES)

Ch 10, 11, 12, 13

Particle Representations
\square Draw 10 molecules for each:
-Solid—molecules held tightly together, wiggle slightly
\square Liquid
-Gas

Particle Representations
\square Draw 10 molecules for each:

- Solid—molecules held tightly together, wiggle slightly - Liquid-molecules packed closely, move rapidly, can slide -Gas

Particle Representations

\square Draw 10 molecules for each:
-Solid—molecules held tightly together, wiggle slightly - Liquid-molecules packed closely, move rapidly, can slide -Gas—molecules far apart, move at high speeds, collide with each other and walls of container

Particle Representations
\square Volume per mole of solids and liquids are similar

Solids, 12.2

Solids, 12.2
\square Properties determined by types and strengths of IMFs
\square Stronger IMFs \rightarrow higher boiling points and vapor pressures -Also melting points, but more subtly

Molecular Solids, 12.6
\square IMFs?
\square Low MP, BP
\square Don't conduct electricity
 Boiling point $\left({ }^{\circ} \mathrm{C}\right)$

Covalent-Network Solids, 12.7

Covalent-Network Solids, 12.7

Metallic solids, 12.4
\square Sea of electrons
\square Conduct heat and electricity
\square Malleable and ductile
\square Interstitial vs substitutional alloys

Metallic solids, 12.4

Biomolecules/biopolymers, 24.6
\square Noncovalent interactions (IMFs) between two different molecules OR between different areas of same molecule

Liquids, 11.3
\square Particles are in close contact
\square Moving and colliding
\square How do IMFs influence arrangement and movement of particles? -Viscosity
\square Surface tension

Gases, 10.1
\square Collisions and spacing between molecules depend on temperature, pressure, volume
\square Can compress
\square Vapor—a substance that is solid or liquid under ordinary conditions (water vapor)

Gases and Pressure, 10.2
\square Units: kPa , psi, atm, mm Hg , torr, etc
$\square 1 \mathrm{~atm}=760 \mathrm{mmHg}=760$ torr
\square Gas pressure caused by molecule collisions (container, each other, etc)
\square Atmospheric pressure caused by gravity, atmosphere presses down on surface
\square Barometer (right)

Combined Gas Law*, 10.3
\square Combined gas law: $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
\square *Not on AP equation and constant sheet*
$\square K={ }^{\circ} \mathrm{C}+273.15$

Boyle's law $P_{1} V_{1}=P_{2} V_{2}, T$ is constant

(a)

(b)

Charles's law $\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}, \mathrm{P}$ is constant

Gay-Lussac law $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}, \mathrm{~V}$ is constant
\square What would a graph look like?

Avogadro's law

\square Constant T, P
\square The volume of a gas is directly proportional to the number of moles (n)
\square What would a graph look like?
\square Equal V of different gases contain the same number of molecules ($1 \mathrm{~mol}=22.4 \mathrm{~L}$ at STP)

Combined gas law practice 2

1. If a 1.23 L sample of gas at 53.0 torr is put under pressure up to a value of 240 . torr at a constant pressure, what is the new volume?
2. A gas has a volume of 0.572 L at $35^{\circ} \mathrm{C}$ an 1.00 atm pressure. What is the temperature inside a container where this gas has a volume of 0.535 L at 1.00 atm ?
3. A gas at $25^{\circ} \mathrm{C}$ in a closed container has its pressure raised from 150. atm to 160. atm. What is the final temperature of the gas?

Combined gas law practice 3

- 20.5 L of nitrogen at $25^{\circ} \mathrm{C}$ and 742 torr are compressed to 9.8 atm at constant temperature. What is the new volume?
\square What would the final volume be if 247 mL of gas at $22^{\circ} \mathrm{C}$ is heated to $98^{\circ} \mathrm{C}$, if the pressure is held constant?
\square At what temperature would a gas at 40.5 atm at $23.4^{\circ} \mathrm{C}$ have at a pressure of 81.9 atm at constant volume?
\square A sample of gas has a volume of 4.18 L at $29^{\circ} \mathrm{C}$ and 732 torr. What would its volume be at $24.8^{\circ} \mathrm{C}$ and 756 torr?

Kinetic molecular theory, 10.7
\square Ideal gases:

- Have no attractive/repulsive forces
- Have negligible volume
-Molecules are in constant, rapid, random, straight-line motion
\square Kinetic energy is proportional to the temperature
-Any two gases at same T have same KE - $K E=1 / 2 m v^{2}$

Distribution of molecular speed, 10.7

Molecular speeds at $25^{\circ} \mathrm{C}$

Ideal Gas Law, 10.4
\square Ideal gas law: $\mathrm{PV}=\mathrm{n}$ R T
$\square \mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; 0.08296 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} ; 62.36 \mathrm{~L}$ torr $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$\square \mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

Molecular speed

\square A sample each of xenon gas and helium gas have the same temperature. Which gas molecules have the fastest speed?
$\square K E=1 / 2 m v^{2}$

Ideal gases vs real gases
\square Real gases:

- Have IMFs
\square Particles have volumes
\square Real gases behave ideally when:
-Low P
-High T
- Low mass

Graphical representations

Ideal gas law practice 4

1. A sample of gas in a 500.0 mL flask has a pressure of 1.2 atm and a temperature of $25^{\circ} \mathrm{C}$. How many moles of the gas are in the flask?
$\square 0.025 \mathrm{~mol}$

Ideal gas law practice 4
2. A sample of aluminum chloride weighing 0.100 g was vaporized at $350 .{ }^{\circ} \mathrm{C}$ and 1.00 atm pressure to produce 19.3 mL of vapor. Calculate the molar mass of aluminum chloride.
$\square 265 \mathrm{~g} \mathrm{~mol}^{-1}$

Ideal gas law sample problem 4
3. What is the density of carbon dioxide at 0.985 atm and $50.0^{\circ} \mathrm{C}$?

Partial pressures, 10.6
\square In a gaseous mixture, each component exerts a pressure (partial pressure)
\square The sum of all the partial pressures $=$ total pressure
$\square P_{T}=P_{1}+P_{2}+P_{3}+\ldots$
$\square P_{1}=X_{1} P_{T}$
\square Mole fraction $X_{1}=n_{1} / n_{T}$

Partial pressure practice 5
The atmospheric pressure at DIA on 12/2 at 10:20 pm was 624 torr. If air is 78% nitrogen and 21% oxygen,
a. Determine the partial pressures of nitrogen and oxygen.
b. If a sample of air contains 10.0 moles of molecules, what is the mole fraction of nitrogen? Oxygen?

Partial pressure practice 5
2. A mixture of gases contains 4.46 moles $\mathrm{Ne}, 0.74$ moles Ar , and 2.15 moles Xe . Calculate the partial pressure of each gas if the total pressure is 2.00 atm .
$\square P_{\mathrm{Ne}}=1.21 \mathrm{~atm}$
$\square P_{\text {Ar }}=0.20 \mathrm{~atm}$
$\square P_{X e}=0.585 \mathrm{~atm}$

Partial pressure practice 5
3. The partial pressure of nitrogen in air is 590 torr and the partial pressure of oxygen in air is 160 torr. What is the total pressure of the air?
4. A sample of oxygen is collected over water at $26^{\circ} \mathrm{C}$ and 760 mmHg . The vapor pressure of water at $26^{\circ} \mathrm{C}$ is 25 mmHg . The total volume of gas is 0.500 L . How many moles of oxygen were collected?

Collecting gas over water

Partial pressure practice 6

\square What happens when the valve is opened?
\square Determine the total pressure of the container after the gases mix.

Effusion and diffusion
\square Effusion—gas passing through small hole into vacuum
\square Diffusion—gas molecules spreading through a volume
\square Lighter molecules move faster than heavier molecules
\square Which will effuse faster, H_{2} or CH_{4} ?
\square Which will diffuse faster, H_{2} or CH_{4} ?

