

Particle Representations

Draw 10 molecules for each:
 Solid
 Liquid
 Gas

Particle Representations

Draw 10 molecules for each:
 Solid—molecules held tightly together, wiggle slightly
 Liquid
 Gas

Particle Representations

Draw 10 molecules for each:

□ Solid—molecules held tightly together, wiggle slightly □ Liquid—molecules packed closely, move rapidly, can slide □ Gas

Particle Representations

Draw 10 molecules for each:
 Solid—molecules held tightly together, wiggle slightly
 Liquid—molecules packed closely, move rapidly, can slide
 Gas—molecules far apart, move at high speeds, collide with each other and walls of container

Particle Representations

 Volume per mole of solids and liquids are similar

Solids, 12.2

Crystalline—repeating pattern
Amorphous—no order

Obsidian (typically KAISi₃O₈), an amorphous solid

Solids, 12.2

- Properties determined by types and strengths of IMFs
- Stronger IMFs → higher boiling points and vapor pressures
 Also melting points, but more subtly

Covalent-Network Solids, 12.7

- Atoms covalently bonded in 3D network
- Diamond, graphite, silicon, germanium, quartz (SiO₂)

Covalent-Network Solids, 12.7

- Nonmetals
- 🗆 High MP
- 🗆 Rigid
- 🗆 Hard
- Why is graphite soft?
 - .

Metallic solids, 12.4

Metallic solids, 12.4

Interstitial alloys
 Rigid
 Harder, stronger
 Less malleable/ductile
 Substitutional alloys

Polymeric solids, 12.8

Monomers joined together

Biomolecules/biopolymers, 24.6

 Noncovalent interactions (IMFs) between two different molecules OR between different areas of same molecule

Liquids, 11.3

- Particles are in close contact
- Moving and colliding
- How do IMFs influence arrangement and movement of particles?
 Viscosity
 - Surface tension

Liquids, 11.3

Gases, 10.1

- Collisions and spacing between molecules depend on temperature, pressure, volume
- Can compress
- Vapor—a substance that is solid or liquid under ordinary conditions (water vapor)

Gases and Pressure, 10.2

- 🗆 Units: kPa, psi, atm, mm Hg, torr, etc
- □ 1 atm = 760 mmHg = 760 torr
- Gas pressure caused by molecule collisions (container, each other, etc)
- Atmospheric pressure caused by gravity, atmosphere presses down on surface
- Barometer (right)

Gas pressure practice 1

Perform the following calculations:

- 1. 657 mmHg to atm
- 2. 830 torr to atm
- 3. 1.50 atm to mmHg

Combined Gas Law*, 10.3

□ Combined gas law: $\frac{\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}}{T_2}$ □ *Not on AP equation and constant sheet*
□ K = °C + 273.15

Gay-Lussac law
$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$
, V is constant

What would a graph look like?

Avogadro's law

- Constant T, P
- The volume of a gas is directly proportional to the number of moles (n)
- What would a graph look like?
- Equal V of different gases contain the same number of molecules (1 mol = 22.4 L at STP)

Avogadro's law

	He	N ₂	Сн4
Volume	22.4 L	22.4 L	22.4 L
Pressure	1 atm	1 atm	1 atm
Temperature	0 °C	0 °C	0 °C
Mass of gas	4.00 g	28.0 g	16.0 g
Number of gas molecules	6.02×10^{23}	6.02×10^{23}	6.02×10^{23}
0	Convright © 2009 Pr	arson Prentice Hall, Inc.	

Combined gas law practice 2

- If a 1.23 L sample of gas at 53.0 torr is put under pressure up to a value of 240. torr at a constant pressure, what is the new volume?
- 2. A gas has a volume of 0.572 L at 35°C an 1.00 atm pressure. What is the temperature inside a container where this gas has a volume of 0.535 L at 1.00 atm?
- A gas at 25 °C in a closed container has its pressure raised from 150. atm to 160. atm. What is the final temperature of the gas?

Combined gas law practice 3

- 20.5 L of nitrogen at 25°C and 742 torr are compressed to 9.8 atm at constant temperature. What is the new volume?
- □ What would the final volume be if 247 mL of gas at 22°C is heated to 98°C , if the pressure is held constant?
- At what temperature would a gas at 40.5 atm at 23.4°C have at a pressure of 81.9 atm at constant volume?
- □ A sample of gas has a volume of 4.18 L at 29°C and 732 torr. What would its volume be at 24.8°C and 756 torr?

Kinetic molecular theory, 10.7

- Ideal gases:
 - Have no attractive/repulsive forces
 - Have negligible volume
- Molecules are in constant, rapid, random, straight-line motion
- Kinetic energy is proportional to the temperature
- Any two gases at same T have same KE

 $\blacksquare \mathsf{KE} = \frac{1}{2} \text{ m } \mathbf{v}^2$

Distribution of molecular speed, 10.7

Molecular speed

A sample each of xenon gas and helium gas have the same temperature. Which gas molecules have the fastest speed?
 KE = 1/2 m v²

Molecular speeds at 25°C

Ideal gases vs real gases

- Real gases:
- Have IMFs
- Particles have volumes
- Real gases behave ideally when:
- Low P
- ∎High T
- Low mass

Ideal Gas Law, 10.4

Ideal gas law: P V = n R T

□ R = 8.314 J mol⁻¹ K⁻¹; 0.08296 L atm mol⁻¹ K⁻¹; 62.36 L torr mol⁻¹ K⁻¹ mol⁻¹ K⁻¹ □ K = °C + 273.15

Graphical representations

Sketch graphs of the relationships between P, V, T, n

Ideal gas law practice 4

1. A sample of gas in a 500.0 mL flask has a pressure of 1.2 atm and a temperature of 25 °C. How many moles of the gas are in the flask?

□ 0.025 mol

Ideal gas law practice 4

2. A sample of aluminum chloride weighing 0.100 g was vaporized at 350.°C and 1.00 atm pressure to produce 19.3 mL of vapor. Calculate the molar mass of aluminum chloride. □ 265 g mol⁻¹

Ideal gas law sample problem 4

3. What is the density of carbon dioxide at 0.985 atm and 50.0°C?

Partial pressures, 10.6

- □ In a gaseous mixture, each component exerts a pressure (partial pressure)
- □ The sum of all the partial pressures = total pressure •••

$$\square P_T = P_1 + P_2 + P_3 +$$

$$\Box P_1 = X_1 P_T$$

 \square Mole fraction $X_1 = n_1/n_T$

Partial pressure practice 5

- 1. The atmospheric pressure at DIA on 12/2 at 10:20 pm was 624 torr. If air is 78% nitrogen and 21% oxygen,
- a. Determine the partial pressures of nitrogen and oxygen.
- b. If a sample of air contains 10.0 moles of molecules, what is the mole fraction of nitrogen? Oxygen?

Partial pressure practice 5

2. A mixture of gases contains 4.46 moles Ne, 0.74 moles Ar, and 2.15 moles Xe. Calculate the partial pressure of each gas if the total pressure is 2.00 atm.

$$\Box \ \mathrm{P_{Ne}} = 1.21 \ \mathrm{atm}$$

$$\square P_{Ar} = 0.20 \text{ atm}$$

 $\square P_{Xe} = 0.585 \text{ atm}$

Partial pressure practice 5

- 3. The partial pressure of nitrogen in air is 590 torr and the partial pressure of oxygen in air is 160 torr. What is the total pressure of the air?
- 4. A sample of oxygen is collected over water at 26°C and 760 mmHg. The vapor pressure of water at 26°C is 25 mmHg. The total volume of gas is 0.500 L. How many moles of oxygen were collected?

Collecting gas over water

Partial pressure practice 6

What happens when the valve is opened?
Determine the total pressure of the container after the gases

Effusion and diffusion

- Effusion—gas passing through small hole into vacuum
- Diffusion—gas molecules spreading through a volume
- Lighter molecules move faster than heavier molecules

 \square Which will effuse faster, H₂ or CH₄?

 \square Which will diffuse faster, H₂ or CH₄?