Name:

Stoichiometry Practice

(to prevent boredom over break)

Directions:

Complete the following problems - show all work in dimensional analysis to receive credit. Include units and don't forget sig figs. Answers posted on my website.

- 1. Balance these equations:
 - a. $2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(g)}$

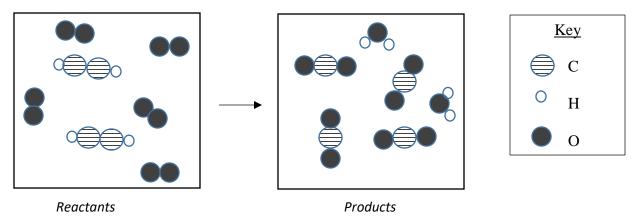
b. $2 C_2 H_{2(g)} + 5 O_{2(g)} \rightarrow 4 CO_{2(g)} + 2 H_2 O_{(I)}$

- c. **2** $K_{(s)}$ + **2** $H_2O_{(1)}$ \rightarrow **2** $KOH_{(aq)}$ + $H_{2(g)}$
- 2. The formation of aluminum oxide from its constituent elements is represented by this equation:

$4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{ O}_3$

a. How many moles of aluminum are needed to form 3.7 mol of Al₂O₃?

6.8 mol Al


b. How many moles of oxygen are required to react completely with 14.8 mol of Al?

11.1 mol O₂

c. Calculate the number of moles of Al_2O_3 formed when 0.78 mol of O_2 reacts with aluminum. 0.52 mol Al_2O_3 3. The combustion of acetylene gas is represented by this equation:

 $2 C_2 H_{2(g)} + 5 O_{2(g)} \rightarrow 4 CO_{2(g)} + 2 H_2 O_{(g)}$

a. Draw a particle representation of the reactants and the products.

b. How many grams of CO_2 and grams of H_2O are produced when 52.0 g of C_2H_2 burns?

36.0 g H₂O 176 g CO₂

c. How many grams of oxygen are required to "burn" 52.0 g of C_2H_2 ?

 $160.\ g\ O_2$

d. Use the answers from (b) and (c) to show that this equation obeys the law of conservation of mass.

212 g reactants = 212 g products

4. Calcium carbonate reacts with phosphoric acid to produce calcium phosphate, carbon dioxide, and water.

 $3 \text{ CaCO}_{3(s)} + 2 \text{ H}_3\text{PO}_{4(aq)} \rightarrow \text{Ca}_3(\text{PO}_4)_{2(aq)} + 3 \text{ CO}_{2(g)} + 3 \text{ H}_2\text{O}_{(l)}$

a. How many grams of calcium chloride will react with 25.0 mL of 1.00 M solution of phosphoric acid (H_3PO_4) ?

 $3.75 \ g \ CaCO_3$

b. Assuming STP conditions, how many liters of carbon dioxide are produced when 5.74 g of CaCO $_3$ reacts with H_3PO_4 ?

 $1.28 \ L \ CO_2$

5. Carbon disulfide is an important industrial solvent. It is prepared by the reaction of coke with sulfur dioxide.

 $_{5}$ C_(s) + 2 SO_{2(g)} \rightarrow CS_{2(s)} + 4 CO_(g)

If 85.0 g of carbon reacts with 67.5 L of sulfur dioxide gas at STP,

a. What mass of carbon disulfide is produced?

b. What is the limiting reagent? Excess reagent?

 $LR = SO_2$; ER = C

c. How many molecules of excess reagent are left over?

3.35x10²⁴ atoms C