- Energy - capacity to do work or transfer heat
- Work - energy used to cause an object with mass to move against a force
- Heat - energy used to cause temperature to increase
- Temperature changes indicate energy changes

Endothermic and exothermic processes

- Exothermic processes
- Reactants have higher energy than products
- What does this feel like?

Endothermic and exothermic processes in chemistry systems

- Heating or cooling a substance
- Phase changes
$\rightarrow s \rightarrow I \rightarrow g$
- Dissolution
- Chemical transformations

Exo- and endo- brainstorming

- List 5 everyday processes and label if they are endo- or exothermic
- How can you tell?
- Partner with someone at your table and double check their labels

Endothermic and exothermic processes in chemistry systems

- Heating or cooling a substance
-Is heating a substance endo- or exo-?
- Is cooling a substance endo- or exo-?

Endothermic and exothermic processes in chemistry systems

- Phase changes

$$
\mathrm{s} \rightarrow \mathrm{I} \rightarrow \mathrm{~g}
$$

-Adding heat rearranges IMFs $(s \rightarrow I)$ or overcomes attractions due to IMFs $(1 \rightarrow \mathrm{~g})$
$\rightarrow \mathrm{g} \rightarrow \mathrm{l} \rightarrow \mathrm{s}$
-What is happening with heat?

Endothermic and exothermic processes in chemistry systems

- Phase changes
- Dissolution
-Endo- or exo- depends on strength of IMFs in solid and water separately and on interparticle interactions when dissolved

Endothermic and exothermic processes
Endothermic and exothermic processes

- System - what we're studying
- Surroundings - everything else

Endothermic and exothermic processes
Energy diagrams

- Endothermic - system gains energy from surroundings - Work done ON system
\rightarrow Exothermic - energy lost by system (reacting species) is gained by surroundings
- Work done BY system

Heat transfer

Heat transfer

- Thermal equilibrium is reached when the average KE
of particles is the same
- Collisions still continue
- Same average KE indicates same T

Heat capacity and calorimetry
Heat capacity and calorimetry
Sample problem

How much heat is needed to warm 250 g of water from $15^{\circ} \mathrm{C}$ (the previous temperature in our classroom) to $95^{\circ} \mathrm{C}$ (the approximate boiling point in Denver)? 84000 J

Using the same amount of heat, what would be the final temperature of a 250 g piece of iron? $760^{\circ} \mathrm{C}$

Heat capacity and calorimetry

- Energy transfer when cooler body is heated by warmer body
- Calorimetry experiments measure heat transfer
- Water and isopropanol demo
$\Rightarrow q=m C \Delta T$
$\rightarrow q \equiv$ heat (J)
- $\mathrm{m} \equiv$ mass (g)
$\rightarrow \mathrm{C} \equiv$ specific heat $\left(\mathrm{J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
$\Delta \Delta T \equiv$ change in $T, \Delta T=T_{f}-T_{i}\left({ }^{\circ} C\right)$

Heat capacity and calorimetry

Practice 1

1. The specific heat of graphite is $0.71 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

Calculate the energy needed to raise the
temperature of 75 g of graphite from 294 K to 348 K. 2900 J
2. Aluminum has a specific heat capacity of $0.902 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$. How much energy is released when 1.0 kg of aluminum cools from $35^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$? - 14000 J

Heat capacity and calorimetry
 (Constant pressure)

- Heat lost by reaction is gained by surroundings
- Heat gained by reaction is lost by surroundings
- $q_{r \times n}=-q_{\text {surroundings }}$
$-q_{\text {rxn }}=-q_{\text {soln }}$

1. A piece of metal weighing 59.047 g was heated to $100.0^{\circ} \mathrm{C}$ and then put it into 100.0 mL of water (initially at $23.7^{\circ} \mathrm{C}$). The metal and water were allowed to come to an equilibrium temperature, determined to be $27.8^{\circ} \mathrm{C}$. Assuming no heat lost to the environment, calculate the specific heat of the metal. $0.402 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$

Heat capacity and calorimetry

Heat capacity and calorimetry

Practice 3

- Other terms

- Heat capacity - heat (J) required to raise T by $1^{\circ} \mathrm{C}$, not specific to mass)
- Molar heat capacity - heat capacity of 1 mol of substance

Heat capacity and calorimetry

Practice 2
2. What is the final temperature when 0.032 kg of milk at $11^{\circ} \mathrm{C}$ is added to 0.16 kg of coffee at $91^{\circ} \mathrm{C}$? Assume the specific heat capacities of the two liquids are the same as water, and disregard any energy transfer to the surroundings. $78{ }^{\circ} \mathrm{C}$

Practice 3

1. Determine the heat needed to increase the temperature of 10.0 g of mercury by $7.5^{\circ} \mathrm{C}$. The molar heat capacity for mercury is 27.8 $\mathrm{J} / \mathrm{mol}^{\circ} \mathrm{C}$. 10. J
2. The specific heat of iron is $0.451 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the molar specific heat of iron? $25.2 \mathrm{~J} / \mathrm{mol}{ }^{\circ} \mathrm{C}$

Heat capacity and calorimetry (Constant pressure)

- Calorimeter also absorbs heat
- Add hot water to cold water in calorimeter
- Calculate q lost by hot water
- Calculate q gained by cold water
- Calorimeter gained the rest

When 40.0 mL of water at $60.0^{\circ} \mathrm{C}$ is added to 40.0 mL water at $25.0^{\circ} \mathrm{C}$ already in a calorimeter, the temperature rises $15.0^{\circ} \mathrm{C}$. What is the heat capacity of the calorimeter? $55.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Heat capacity and calorimetry

 Practice 41. 50.0 mL of water at $40.5^{\circ} \mathrm{C}$ is added to a calorimeter containing 50.0 mL of water at 17.4 ${ }^{\circ} \mathrm{C}$. After waiting for the system to equilibrate, the final temperature reached is $28.3^{\circ} \mathrm{C}$. Calculate the heat capacity of the calorimeter (just the calorimeter without water). $25 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

Heat capacity and calorimetry

Sample problem

- When 50.0 mL of $0.10 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ and 50.0 mL of $0.10 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$, both at $22.0^{\circ} \mathrm{C}$, are added to a coffee cup calorimeter, the temperature of the mixture reaches a maximum of $28.9^{\circ} \mathrm{C}$. What is the approximate amount of heat produced by this reaction? 2890 J

Heat capacity and calorimetry
Practice 4
3. When 3.12 g of glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, is burned in a bomb calorimeter, the temperature of the calorimeter increases from $23.8^{\circ} \mathrm{C}$ to $35.6^{\circ} \mathrm{C}$. The calorimeter contains 775 g of water, and the bomb itself has a heat capacity of 893 $J /{ }^{\circ} \mathrm{C}$. How much heat was produced by the combustion of the glucose sample? -48.8 kJ

Changing energy

- Systems change energy through
- Heating/cooling
- Phase changes
- Chemical reactions

Energy of phase changes
$\rightarrow s \rightarrow I \rightarrow g$ Requires heat

- Energy of system increases
$\rightarrow \mathrm{g} \rightarrow \mathrm{I} \rightarrow \mathrm{s}$ Releases heat
- Energy of system decreases
- T of pure substance remains constant during phase change

Energy of phase changes
What do you notice?

Energy of phase changes

- How are $\Delta H_{\text {vap }}$ and $\Delta H_{\text {condense }}$ related?
\Rightarrow If $\Delta \mathrm{H}_{\text {fus }}$ of ethanol is $5.02 \mathrm{~kJ} / \mathrm{mol}$ at its melting point, $-114^{\circ} \mathrm{C}$. What is its $\Delta \mathrm{H}_{\text {solid }}$ at the same temperature?
- How much heat is required to melt 2.50 mol of ethanol at $-114^{\circ} \mathrm{C}$?

Energy of phase changes
Heating curves

- Label your heating curve
- What is happening from A to B ? As you add heat, what are the particles doing? What is the heat being used for?
- B to C ?
- C to D ?
\rightarrow D to E ?
- E to F?
add

$$
2
$$

Energy of phase changes

- Heating s , l , or g increases T , average KE
- During phase transitions $\Delta \mathrm{T}=0$ therefore ave KE doesn't change
-PE changes, modifying/overcoming IMFs

Energy of phase changes
Practice 5

Calculate the heat required to change 9.00 g of solid $\mathrm{H}_{2} \mathrm{O}$ at $-25^{\circ} \mathrm{C}$ to vapor at $125^{\circ} \mathrm{C}$. The specific heats of ice, liquid water, and steam are $2.03 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}, 4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$, and $1.84 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$, respectively. $\Delta \mathrm{H}_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{H}_{\text {vap }}=$ $40.67 \mathrm{~kJ} / \mathrm{mol} .27 .9 \mathrm{~kJ}$

Energy of phase changes
Practice 5
2. Calculate the heat released when 9.00 g of $\mathrm{H}_{2} \mathrm{O}$ vapor at $125^{\circ} \mathrm{C}$ is cooled to a solid at -25 ${ }^{\circ} \mathrm{C}$. The specific heats of ice, liquid water, and steam are $2.03 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}, 4.184 \mathrm{~J} / \mathrm{g} \cdot \mathrm{K}$, and 1.84 $\mathrm{J} / \mathrm{g} \cdot \mathrm{K}$, respectively. $\Delta \mathrm{H}_{\text {solid }}=-6.01 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta H_{\text {condense }}=-40.67 \mathrm{~kJ} / \mathrm{mol} . ~-27.9 \mathrm{~kJ}$

Energy of phase changes
Vapor pressure

- In a liquid, some molecules at surface escape to vapor.
- Molecules vaporize, then condense

Energy of phase changes
Vapor pressure

Introduction to enthalpy of reaction

- Enthalpy change of a reaction is the amount of heat energy released/absorbed at constant pressure
- At constant $\mathrm{P}, \mathrm{AH}=\mathrm{q}$
> Heat = energy $(\mathrm{q}=\mathrm{E}) \therefore \Delta \mathrm{H}=\Delta \mathrm{E}$

Introduction to enthalpy of reaction Sample problems

1. $\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+890 \mathrm{~kJ} \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

How much heat is needed for 10.0 g of carbon dioxide to react? $2.0 \times 10^{2} \mathrm{~kJ}$
2. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-890 \mathrm{~kJ}$

How much heat is released with 10.0 g of carbon dioxide is produced? $-2.0 \times 10^{2} \mathrm{~kJ}$

Introduction to enthalpy of reaction
Practice 6

1. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})+196 \mathrm{~kJ}$

Calculate the quantity of heat released when 5.00 g of hydrogen peroxide decomposes. - 14.4 kJ
2. $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-890 \mathrm{~kJ}$ How much heat is released with 4.50 g of methane gas is burned? -250. kJ

- Breaking and forming bonds changes the potential energy
- Energy required to break bonds
- Energy released by forming bonds
- Estimate energy needed to break bonds by adding up bond energies for all bonds broken
- Estimate energy released by forming bonds by adding up bond energies for all bonds formed
- Determine enthalpy for the reaction.

Bond enthalpies
Sample problem

Bond enthalpies

Activity

1. Correctly balanced equations
2. Build accurate models of reactants and products (showing single, double, triple bonds
a. Keep in mind bond angles and length differences due to single, double, triple
3. Determine enthalpy change of the reaction

Enthalpy of formation $\left(\Delta H_{f}{ }^{\circ}\right)$

- Enthalpy change when forming a compound from its elements
$\nabla_{\text {f }}$ indicates formation from elements
∇° indicates standard state ($1 \mathrm{~atm}, 25^{\circ} \mathrm{C} / 298 \mathrm{~K}$)

Enthalpy of formation $\left(\Delta H_{f}{ }^{\circ}\right)$
\rightarrow elements ${ }^{\circ} \rightarrow 1$ mol compound

- 2 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$
- $\Delta H_{f}{ }^{\circ}=-277.7 \mathrm{~kJ}$
$\Delta \Delta H_{f}^{\circ}$ of most stable form of the element $=0$ (like H_{2}, $\mathrm{O}_{2}, \mathrm{C}$ (graphite))

Write the equation for the formation of the following compounds from its elements in their standard states:

1. Sodium oxide
2. Potassium chloride
3. Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

- Enthalpy is a state function
- Only depends on initial and final states, not how you get there
- Like displacement
- Enthalpy depends on amount of matter that undergoes change, initial state of reactants, final state of products

Hess's law

Sample problem
(1)
(2)

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{1}=-393.5 \mathrm{~kJ} \\
& \mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{2}=-283.0 \mathrm{~kJ}
\end{aligned}
$$

Using these data, calculate the enthalpy for the combustion of C to CO :
(3)

$$
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g}) \quad \Delta H_{3}=?
$$

$-110.5 \mathrm{~kJ}$

2. Calculate $\Delta \mathrm{H}$ for the reaction $\mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow$ NO_{2} (g) given the following equations and their respective enthalpy changes

$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g})$	$\longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$	ΔH	$=-198.9 \mathrm{~kJ}$
$\mathrm{O}_{3}(\mathrm{~g})$	$\longrightarrow \frac{3}{2} \mathrm{O}_{2}(\mathrm{~g})$	ΔH	$=-142.3 \mathrm{~kJ}$
$\mathrm{O}_{2}(\mathrm{~g})$	$\longrightarrow 2 \mathrm{O}(\mathrm{g})$	ΔH	$=495.0 \mathrm{~kJ}$

-304.1 kJ

Hess's law

- Enthalpy of solution ($\Delta \mathrm{H}_{\text {soln }}$) released/absorbed when a solution is formed
- Breaking ionic bonds between solute molecules
- "Breaking" intermolecular attractions between solvent molecules
- Forming new solute-solvent attractive bonds
- Endo- or exo- depends on relative amounts of energy

$\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma n \Delta H_{f}^{\circ}($ products $)-\Sigma m \Delta H_{f}^{\circ}($ reactants $)$
- m and n mean USE STOICH

Hess's law

Sample problem

- Calculate the standard enthalpy change for the combustion of 1 mole of benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$ (I) to its products ($\mathrm{H}_{2} \mathrm{O}$ is liquid). -3267.0 kJ

					\bigcirc
Substance	Formula	$\Delta H^{\prime}(\mathbf{k} / \mathrm{mol})$	Substance	Formula	$\Delta H_{j}(\mathrm{~kJ} / \mathrm{mol})$
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	226.7	Hydrogen chloride	$\mathrm{HCl}(\mathrm{g})$	-92.30
Ammonia	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	Hydrogen fluoride	$\mathrm{HF}(\mathrm{g})$	-268.60
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$	49.0	Hydrogen iodide	$\mathrm{HI}(\mathrm{g})$	25.9
Calcium carbonate	$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1207.1	Methane	$\mathrm{CH}_{4}(\mathrm{~g})$	-74.80
Calcium oxide	$\mathrm{CaO}(3)$	-635.5	Methanol	$\mathrm{CH}_{3} \mathrm{OH}(t)$	-238.6
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	Propane	$\mathrm{C}_{3} \mathrm{H}_{5}(\mathrm{~g})$	-103.85
Carbon monoxide	$\mathrm{CO}(\mathrm{g})$	-110.5	Silver chloride	$\mathrm{AgCl}^{\text {(}}$	-127.0
Diamond	$\mathrm{C}(\mathrm{s})$	1.88	Sodium bicarbonate	$\mathrm{NaHCO}_{3}(\mathrm{~s})$	-947.7
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.68	Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	-1130.9
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}(t)$	-277.7	Sodium chloride	$\mathrm{NaCl}(\mathrm{s})$	-410.9
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.30	Sucrose	$\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{O}_{11}(\mathrm{~s})$	-2221
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$	-1273	Water	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8
Hydrogen bromide	$\mathrm{HBr}(\mathrm{g})$	-36.23	Water vapor	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8

Substance	Formula	$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$	226.7	
Ammonia	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.19	
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	49.0	
Calcium carbonate	$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1207.1	
Calcium oxide	$\mathrm{CaO}(\mathrm{s})$	-635.5	
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	
Carbon monoxide	$\mathrm{CO}(\mathrm{g})$	-110.5	
Diamond	$\mathrm{C}(\mathrm{s})$	1.88	
Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-84.68	
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-277.7	
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	52.30	
Glucose	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)$	-1273	
Hydrogen bromide	$\mathrm{HBr}(\mathrm{g})$	-36.23	

Substance	Formula	$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$	
Hydrogen chloride	$\mathrm{HCl}(\mathrm{g})$	-92.30	75
Hydrogen fluoride	$\mathrm{HF}(\mathrm{g})$	-268.60	
Hydrogen iodide	$\mathrm{HI}(\mathrm{g})$	25.9	
Methane	$\mathrm{CH}_{4}(\mathrm{~g})$	-74.80	
Methanol	$\mathrm{CH}_{3} \mathrm{OH}(l)$	-238.6	
Propane	$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	-103.85	
Silver chloride	$\mathrm{AgCl}(\mathrm{s})$	-127.0	
Sodium bicarbonate	$\mathrm{NaHCO}_{3}(\mathrm{~s})$	-947.7	
Sodium carbonate	$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$	-1130.9	
Sodium chloride	$\mathrm{NaCl}(\mathrm{s})$	-410.9	
Sucrose	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$	-2221	
Water	$\mathrm{H}_{2} \mathrm{O}(l)$	-285.8	
Water vapor	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	

Hess's law
 Practice 9

1. Calculate the enthalpy change for the decomposition of calcium carbonate into calcium oxide and carbon dioxide. $178.1 \mathrm{~kJ} / \mathrm{mol}$
2. Calculate the enthalpy change for the combustion of 1 mol of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (the water is liquid). $-1366.7 \mathrm{~kJ} / \mathrm{mol}$
3. Calculate the standard enthalpy of formation of $\mathrm{CuO}(\mathrm{s})$.
