

Energy vocab

- Energy capacity to do work or transfer heat
 Work energy used to cause an object with
- mass to move against a force
- Heat energy used to cause temperature to increase

Energy vocab

- ▶ Kinetic energy energy of motion
- Potential energy stored energy or energy of position
- Energy units: Joules, cal, kJ, kcal (Cal)
- ▶ 4.184 J = 1 cal

Energy vocab

- Chemical energy potential energy stored in arrangement of atoms in molecule
- Thermal energy energy because of temperature

Endothermic and exothermic processes

 Temperature changes indicate energy changes

Endothermic and exothermic processes

- ► Endothermic processes
 - ▶ Products have higher energy than reactants
 - ▶ What does this feel like?

Endothermic and exothermic processes

- Exothermic processes
 Reactants have higher energy
 - than products
 - ▶ What does this feel like?

Exo- and endo- brainstorming

- List 5 everyday processes and label if they are endo- or exothermic
- How can you tell?
- Partner with someone at your table and double check their labels

Endothermic and exothermic processes ⁹ In chemistry systems in ch

- ▶ Heating or cooling a substance
- Phase changes
 - ⊳s → I → g
 - Dissolution
- Chemical transformations

Endothermic and exothermic processes in chemistry systems

- ▶ Heating or cooling a substance
 - ▶ Is heating a substance endo- or exo-?
 - ▶ Is cooling a substance endo- or exo-?

Endothermic and exothermic processes in chemistry systems

- Phase changes
 - ightarrow s ightarrow l ightarrow g
 - Adding heat rearranges IMFs (s → I) or overcomes attractions due to IMFs (I → g)
 - ⊳g→l→s
 - ▶What is happening with heat?

Endothermic and exothermic processes in chemistry systems

- Phase changes
 - Dissolution
 - Endo- or exo- depends on strength of IMFs in solid and water separately and on interparticle interactions when dissolved

Endothermic and exothermic processes in chemistry systems

- Chemical transformations
 - ► Chemical reactions

Endothermic and exothermic processes

- System what we're studying
- Surroundings everything else

Endothermic and exothermic processes

- Endothermic system gains energy from surroundings
 - Work done ON system
- Exothermic energy lost by system (reacting species) is gained by surroundings
 - ► Work done BY system

Heat capacity and calorimetry

- Energy transfer when cooler body is heated by warmer body
- > Calorimetry experiments measure heat transfer
- ▶ Water and isopropanol demo

- The specific heat of graphite is 0.71 J/g°C. Calculate the energy needed to raise the temperature of 75 g of graphite from 294 K to 348 K. 2900 J
- Aluminum has a specific heat capacity of 0.902 J/g °C. How much energy is released when 1.0 kg of aluminum cools from 35 °C to 20 °C? -14 000 J

- ► Examples?
- Transfer of specific amount of heat will not produce the same temperature change
 - Due to different heat capacities

Heat capacity and calorimetry (Constant pressure)

- Heat lost by reaction is gained by surroundings
- Heat gained by reaction is lost by surroundings
- ► q_{rxn} = -q_{surroundings}
- ► q_{rxn} = q_{soln}

Heat capacity and calorimetry Practice 2

 A piece of metal weighing 59.047 g was heated to 100.0 °C and then put it into 100.0 mL of water (initially at 23.7 °C). The metal and water were allowed to come to an equilibrium temperature, determined to be 27.8 °C. Assuming no heat lost to the environment, calculate the specific heat of the metal. 0.402 J/g °C

Heat capacity and calorimetry Practice 2

 What is the final temperature when 0.032 kg of milk at 11°C is added to 0.16 kg of coffee at 91°C? Assume the specific heat capacities of the two liquids are the same as water, and disregard any energy transfer to the surroundings. 78 °C

Heat capacity and calorimetry

- Other terms
 - Heat capacity heat (J) required to raise T by 1°C, not specific to mass)
 - Molar heat capacity heat capacity of 1 mol of substance

Heat capacity and calorimetry Practice 3

- Determine the heat needed to increase the temperature of 10.0 g of mercury by 7.5°C. The molar heat capacity for mercury is 27.8 J/mol°C. 10. J
- 2. The specific heat of iron is 0.451 J/g°C. What is the molar specific heat of iron? 25.2 J/mol °C

Heat capacity and calorimetry (Constant pressure)

- Calorimeter also absorbs heat
- Add hot water to cold water in calorimeter
- Calculate q lost by hot water
- Calculate q gained by cold water
- Calorimeter gained the rest

Heat capacity and calorimetry Practice 4

 50.0 mL of water at 40.5 °C is added to a calorimeter containing 50.0 mL of water at 17.4 °C. After waiting for the system to equilibrate, the final temperature reached is 28.3 °C.
 Calculate the heat capacity of the calorimeter (just the calorimeter without water). 25 J/ °C

Heat capacity and calorimetry Practice 4

2. When 100. mL of 0.200 M NaCl(aq) and 100. mL of 0.200 M AgNO₃(aq), both at 21.9 °C, are mixed in a coffee cup calorimeter, the temperature increases to 23.5 °C. Write a balanced equation and net ionic equation. How much heat is produced by this precipitation reaction? What assumptions did you make to determine your value? 1340 J

Heat capacity and calorimetry Practice 4

3. When 3.12 g of glucose, C₆H₁₂O₆, is burned in a bomb calorimeter, the temperature of the calorimeter increases from 23.8 °C to 35.6 °C. The calorimeter contains 775 g of water, and the bomb itself has a heat capacity of 893 J/°C. How much heat was produced by the combustion of the glucose sample? -48.8 kJ

Changing energy

- Systems change energy through
 - ► Heating/cooling
 - Phase changes
 - Chemical reactions

Energy of phase changes Heating curves

- ▶ Label your heating curve
- ▶ What is happening from A to B? As you add heat, what are the particles doing? What is the heat being used for?
- ▶ B to C?
- ► C to D?
- ▶ D to E?
- ► to F?

Energy of phase changes

- ▶ Heating s, I, or g increases T, average KE
- ▶ During phase transitions △T=0 therefore ave KE doesn't change
 - ▶ PE changes, modifying/overcoming IMFs

Energy of phase changes Practice 5 Practice 5 1. Calculate the heat required to change 9.00 g of solid H₂O at -25 °C to vapor at 125 °C. The specific heats of ice, liquid water, and steam are 2.03 J/g·K, 4.184 J/g·K, and 1.84 J/g·K, respectively. $\Delta H_{fus} = 6.01$ kJ/mol and $\Delta H_{vap} =$ 40.67 kJ/mol. 27.9 kJ

2. Calculate the heat released when 9.00 g of H₂O vapor at 125 °C is cooled to a solid at -25 °C. The specific heats of ice, liquid water, and steam are 2.03 J/g·K, 4.184 J/g·K, and 1.84 J/g·K, respectively. ΔH_{solid} = -6.01 kJ/mol and $\Delta H_{condense}$ = -40.67 kJ/mol. -27.9 kJ

Introduction to enthalpy of reaction

- Enthalpy change of a reaction is the amount of heat energy released/absorbed at constant pressure
- ► At constant P, ΔH = q
- ► Heat = energy (q = E) $\therefore \Delta H = \Delta E$

Introduction to enthalpy of reaction Sample problems

- CO₂(g) + 2 H₂O(I) + 890 kJ → CH₄(g) + 2 O₂(g) How much heat is needed for 10.0 g of carbon dioxide to react? 2.0x10² kJ
- CH₄(g) + 2 O₂(g) → CO₂(g) + 2 H₂O(g) ΔH = -890 kJ How much heat is released with 10.0 g of carbon dioxide is produced? -2.0x10² kJ

Introduction to enthalpy of reaction Practice 6

- 1. 2 H₂O₂(I) → 2 H₂O(I) + O₂(g) + 196 kJ Calculate the quantity of heat released when 5.00 g of hydrogen peroxide decomposes. -14.4 kJ
- 2. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ $\Delta H = -890 \text{ kJ}$ How much heat is released with 4.50 g of methane gas is burned? -250. kJ

10

Hess's law	Formatio	on Of NaCl(s)	62
	Path 1	Path 2	
Na"(g	+ Cl ⁻ (g) AH = -411 kJ/mol	Na(s) + Na(g) + Na*(g) + Na*(g) +	$\begin{array}{l} SCL_{2}(g)\\ (att - itt island\\ SCL_{2}(g)\\ (att - itt) island\\ SCL_{2}(g)\\ (att - itt) island\\ (att$
N	Cl(s)	Nat	ici(s)
	Both paths still ha	we a ΔH of -411 k	kJ/mol

11

Hess's law Practice 8	67
 Calculate ΔH for the reaction NO(NO₂(g) given the following equation respective enthalpy changes 	g) + O(g) \rightarrow ons and their
$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$	$\Delta H = -198.9 \text{ kJ}$
$O_3(g) \longrightarrow \frac{1}{2} O_2(g)$ $O_2(g) \longrightarrow 2 O(g)$	$\Delta H = -142.3 \text{ kJ}$ $\Delta H = 495.0 \text{ kJ}$
-3041 kl	

Hess's law	70
• Use ΔH_{f}° to determine ΔH_{rxn}°	
$C_3H_8(g) \longrightarrow 3 C(s) + 4 H_2(g)$	$\Delta H_1 = -\Delta H_f^{\rm o} \left[{\rm C}_3 {\rm H}_8 (g) \right]$
$3 C(s) + 3 O_2(g) \longrightarrow 3 CO_2(g)$	$\Delta H_2 = 3\Delta H_f^{\circ} [CO_2(g)]$
$4 \operatorname{H}_2(g) + 2 \operatorname{O}_2(g) \longrightarrow 4 \operatorname{H}_2\operatorname{O}(l)$	$\Delta H_3 = 4\Delta H_f^{\circ} [H_2 O(l)]$
$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(l)$	$\triangle H^{\circ}_{\rm ryn} = \triangle H_1 + \triangle H_2 + \triangle H_1$

Substance	Formula	ΔH_f^{2} (kJ/mol)	Substance	Formula	ΔH_f° (kJ/mol)
Acetylene	$C_2H_2(g)$	226.7	Hydrogen chloride	HCl(g)	-92.30
Ammonia	NH ₃ (g)	-46.19	Hydrogen fluoride	HF(g)	-268.60
Benzene	$C_6H_6(l)$	49.0	Hydrogen iodide	HI(g)	25.9
Calcium carbonate	$CaCO_3(s)$	-1207.1	Methane	$CH_4(g)$	-74.80
Calcium oxide	CaO(s)	-635.5	Methanol	CH3OH(1)	-238.6
Carbon dioxide	$CO_2(g)$	-393.5	Propane	$C_3H_8(g)$	-103.85
Carbon monoxide	CO(g)	-110.5	Silver chloride	AgCl(s)	-127.0
Diamond	C(s)	1.88	Sodium bicarbonate	NaHCO ₃ (s)	-947.7
Ethane	$C_2H_6(g)$	-84.68	Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Ethanol	C2H5OH(l)	-277.7	Sodium chloride	NaCl(s)	-410.9
Ethylene	$C_2H_4(g)$	52.30	Sucrose	C12H22O11(s)	-2221
Glucose	C6H12O6(5)	-1273	Water	$H_2O(I)$	-285.8
Hydrogen bromide	HBr(g)	-36.23	Water vapor	$H_2O(g)$	-241.8

Acetylene $C_2H_2(g)$ 226.7Ammonia $NH_3(g)$ -46.19Benzene $C_6H_6(l)$ 49.0Calcium carbonate $CaCO_3(s)$ -1207.1	
Ammonia $NH_3(g)$ -46.19 Benzene $C_6H_6(l)$ 49.0 Calcium carbonate $CaCO_1(s)$ -1207.1	74
Benzene $C_6H_6(l)$ 49.0 Calcium carbonate $CaCO_3(s)$ -1207.1	
Calcium carbonate $CaCO_3(s)$ -1207.1	
Calcium oxide CaO(s) -635.5	
Carbon dioxide CO ₂ (g) -393.5	
Carbon monoxide CO(g) -110.5	
Diamond C(s) 1.88	
Ethane C ₂ H ₆ (g) -84.68	
Ethanol C ₂ H ₅ OH(<i>l</i>) -277.7	
Ethylene C ₂ H ₄ (g) 52.30	
Glucose $C_6H_{12}O_6(s)$ -1273	
Hydrogen bromide HBr(g) -36.23	

Substance	Formula	ΔH_f° (kJ/mol)
Hydrogen chloride	HCl(g)	-92.30 75
Hydrogen fluoride	HF(g)	-268.60
Hydrogen iodide	HI(g)	25.9
Methane	$CH_4(g)$	-74.80
Methanol	$CH_3OH(l)$	-238.6
Propane	$C_3H_8(g)$	-103.85
Silver chloride	AgCl(s)	-127.0
Sodium bicarbonate	NaHCO ₃ (s)	-947.7
Sodium carbonate	$Na_2CO_3(s)$	-1130.9
Sodium chloride	NaCl(s)	-410.9
Sucrose	$C_{12}H_{22}O_{11}(s)$	-2221
Water	$H_2O(l)$	-285.8
Water vapor	$H_2O(g)$	-241.8

Hess's law

What happens if the products of a reaction are at a different temperature from the surroundings?