AP Chemistry
 Unit 5- Homework Problems
 Thermodynamics

Specific Heat Problems

1. How many J would it take to raise the temperature of 200 grams of water from $5^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$? $\mathrm{Q}=(200 \mathrm{~g})(4.18)\left(80^{\circ} \mathrm{C}\right)=66880 \mathrm{~J}$
2. How many J would problem number 1 be if it was aluminum instead of water?
$\mathrm{Q}=(200 \mathrm{~g})(0.897)\left(80^{\circ} \mathrm{C}\right)=14352 \mathrm{~J}$
3. How many grams of copper could be heated from $20^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ if 1200 J are applied to it? $1200 \mathrm{~J}=(\mathrm{x})(0.385)\left(55^{\circ} \mathrm{C}\right)=56.7 \mathrm{~g}$
4. What is the specific heat capacity of a substance if 750 J caused 100 grams of it to go from 90 ${ }^{\circ} \mathrm{C}$ to $135^{\circ} \mathrm{C}$?
$750 \mathrm{~J}=(100 \mathrm{~g})(\mathrm{x})\left(45^{\circ} \mathrm{C}\right)=0.167 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
5. What would the final temperature be if 500 J are applied to 150 grams of ice at $-90^{\circ} \mathrm{C}$?
$500 \mathrm{~J}=(150 \mathrm{~g})(2.06)\left(\mathrm{x}-\left(-90^{\circ} \mathrm{C}\right)\right)=-88.4^{\circ} \mathrm{C}$
6. What would the temperature change by if a 90 gram piece of hot iron cooled by losing 200 J . $-200 \mathrm{~J}=(90 \mathrm{~g})(0.449)(\mathrm{x})=-4.95^{\circ} \mathrm{C}$
7. What was the initial temperature if 500 J were applied to 250 g of mercury and the final temperature was $50^{\circ} \mathrm{C}$?
$500 \mathrm{~J}=(250 \mathrm{~g})(0.140)\left(50^{\circ} \mathrm{C}-\mathrm{x}\right)=35.7^{\circ} \mathrm{C}$

Latent Heat Problems

1. Why can we not use the equation $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$ for phase changes of a substance; why won't it work?
There is no temperature change at a phase change
2. What is the Latent Heat of Fusion of a substance?

Energy needed to melt or freeze
3. What is the Latent Heat of Vaporization of a substance?

Energy needed to boil or condense
4. How many J are needed to melt 30 grams of copper?
$\mathrm{Q}=(30 \mathrm{~g})(209 \mathrm{~J} / \mathrm{g})=6270 \mathrm{~J}$
5. How much heat is needed to boil 63 grams of ethanol?
$\mathrm{Q}=(63 \mathrm{~g})(838 \mathrm{~J} / \mathrm{g})=52.8 \mathrm{~kJ}$
6. What is the Latent Heat of Fusion of a substance if 1200 J melts 40 grams of it?
$1200 \mathrm{~J}=(40 \mathrm{~g})(\mathrm{x})=30 \mathrm{~J} / \mathrm{g}$
7. What is the Latent Heat of Vaporization of a substance if 50 J boiled 3 grams of it?
$50 \mathrm{~J}=(3 \mathrm{~g})(\mathrm{x})=16.7 \mathrm{~J} / \mathrm{g}$
8. How many grams of copper could be melted if 700 J are applied to it? $700 \mathrm{~J}=(\mathrm{x})(209 \mathrm{~J} / \mathrm{g})=3.35 \mathrm{~g}$
9. How many grams of water could be boiled if 8000 J are applied to it?
$8000 \mathrm{~J}=(\mathrm{x})(2260 \mathrm{~J} / \mathrm{g})=3.54 \mathrm{~g}$

Combination Problems

1. How much energy is needed to heat 200 grams of diethyl ether, $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$, from $5^{\circ} \mathrm{C}$ to its boiling point and boil it?
A) Heat to boiling point $\mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(200 \mathrm{~g})(2.33)\left(34.6-5^{\circ} \mathrm{C}\right)=13.8 \mathrm{~kJ}$
B) Boil $\quad \mathrm{Q}=\mathrm{mL}_{\mathrm{v}}=(200 \mathrm{~g})(357 \mathrm{~J} / \mathrm{g})=71.4 \mathrm{~kJ}$

Total $=13.8+71.4=85.2 \mathrm{~kJ}$
2. How much energy is needed to turn 400 grams of liquid benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, at $20^{\circ} \mathrm{C}$ to gaseous benzene at $150{ }^{\circ} \mathrm{C}$?
A) Heat to boiling point $\quad \mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(400 \mathrm{~g})(1.74)\left(80-20^{\circ} \mathrm{C}\right)=41.8 \mathrm{~kJ}$
B) Boil
$\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}=(400 \mathrm{~g})(393 \mathrm{~J} / \mathrm{g})=157.2 \mathrm{~kJ}$
C) Heat gas from bp to $150{ }^{\circ} \mathrm{C}$
$\mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(400 \mathrm{~g})(1.06)(150-80)=29.7 \mathrm{~kJ}$
Total $=41.8+157.2+29.7=228.7 \mathrm{~kJ}$
3. How much energy is needed to turn a 75 g block of ice at $-40^{\circ} \mathrm{C}$ to steam at $250{ }^{\circ} \mathrm{C}$?
A) Heat to melting point $\quad \mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(75 \mathrm{~g})(2.06)\left(0-\left(-40^{\circ} \mathrm{C}\right)\right)=6.2 \mathrm{~kJ}$
B) Melt
$\mathrm{Q}=\mathrm{mL}_{\mathrm{f}}=(75 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g})=25 \mathrm{~kJ}$
C) Heat liq from $m p$ to $b p$
$\mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(75 \mathrm{~g})(4.18)\left(100-0{ }^{\circ} \mathrm{C}\right)=31.4 \mathrm{~kJ}$
B) Boil
$\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}=(75 \mathrm{~g})(2260 \mathrm{~J} / \mathrm{g})=169.5 \mathrm{~kJ}$
C) Heat gas from bp to $250{ }^{\circ} \mathrm{C}$
$\mathrm{Q}=\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=(75 \mathrm{~g})(1.86)\left(250-100{ }^{\circ} \mathrm{C}\right)=20.9 \mathrm{~kJ}$

Total $=6.2+25+31.4+169.5+20.9 \mathrm{~kJ}=253 \mathrm{~kJ}$
4) Which part of \#3 contributes the most energy to the overall process?

The boiling part (going from liquid to gas or vice versa) requires the most energy

Latent Heat Graphing

1. What do you call each of the following changes of state:
A. Solid to liquid melt
B. Liquid to gas boil
C. Gas to solid deposition
D. Solid to gas sublimation
E. Liquid to solid freeze
F. Gas to liquid condense
2. The melting point of a solid is the same as what other point?

Freezing point
3. The condensing point of a gas is the same as what other point?

Boiling point
4. Octane, the major component in gasoline freezes at $-57{ }^{\circ} \mathrm{C}$ and boils at $125{ }^{\circ} \mathrm{C}$. If gaseous octane was cooled from $200^{\circ} \mathrm{C}$ to $-100{ }^{\circ} \mathrm{C}$, draw what the graph would look like:

5. The following graph shows three different substances and their phase changes. Answer the following questions about them:
A. What is the melting point of substance Y? @ $-25^{\circ} \mathrm{C}$
B. What is the boiling point of substance Z? @ $40^{\circ} \mathrm{C}$
C. Which substance is still a solid when the other two substances have turned to gases? X
D. Which substance has the lowest boiling point? Y
E. Which substance has the lowest freezing point? Z

6. Water boils at $100^{\circ} \mathrm{C}$. Why are steam burns potentially more dangerous than boiling water burns?
Under normal conditions, liquid water can only get up to $100^{\circ} \mathrm{C}$. Steam, because it is a gas, can get hotter than $100^{\circ} \mathrm{C}$ and is potentially more dangerous because of it .

Calorimetry

1. What is the specific heat capacity of water? $4.18 \mathrm{~J} / \mathrm{g}^{0} \mathrm{C}$
2. A piece of ice is placed on the sidewalk on a hot summer day. Describe what happens to energy content of the piece of ice, does it gain or lose energy? What happens to the air around the ice, does it gain or lose energy?
The ice gains energy from the surrounding air and increases its energy (endothermic).
The air loses energy to the ice and decreases its energy (exothermic)
3. 100 grams of hot water at $80^{\circ} \mathrm{C}$ is combined with 100 grams of cool water at $20^{\circ} \mathrm{C}$. What is the final temperature of the combined water?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \operatorname{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)(100 \mathrm{~g})(4.18)\left(\mathrm{x}-80^{\circ} \mathrm{C}\right)=-(100 \mathrm{~g})(4.18)\left(\mathrm{x}-20^{\circ} \mathrm{C}\right) \quad \mathrm{T}_{\mathrm{f}}=50^{\circ} \mathrm{C}$
4. 100 grams of hot water at $80^{\circ} \mathrm{C}$ is combined with 50 grams of cool water at $20^{\circ} \mathrm{C}$. What is the final temperature of the combined water?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \operatorname{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)(100 \mathrm{~g})(4.18)\left(\mathrm{x}-80^{\circ} \mathrm{C}\right)=-(50 \mathrm{~g})(4.18)\left(\mathrm{x}-20^{\circ} \mathrm{C}\right) \quad \mathrm{T}_{\mathrm{f}}=60^{\circ} \mathrm{C}$
5. A 25 gram piece of hot metal at $97{ }^{\circ} \mathrm{C}$ is plunged into a 35 gram cup of cool water at $19^{\circ} \mathrm{C}$. The metal gives up its heat to the water until they are both at $22^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \operatorname{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)(25 \mathrm{~g})(\mathrm{x})\left(22-97^{\circ} \mathrm{C}\right)=-(35 \mathrm{~g})(4.18)\left(22-19^{\circ} \mathrm{C}\right) \quad \mathrm{C}=0.234 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
6. A 75 gram piece of hot metal at $100^{\circ} \mathrm{C}$ is dropped into a 50 gram cup of cool water at $22^{\circ} \mathrm{C}$. The final temperature of the system is $30^{\circ} \mathrm{C}$. What is the specific heat capacity of the metal?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)(75 \mathrm{~g})(\mathrm{x})\left(30-100^{\circ} \mathrm{C}\right)=-(50 \mathrm{~g})(4.18)\left(30-22{ }^{\circ} \mathrm{C}\right) \quad \mathrm{C}=0.318 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
7. A 120 gram piece of copper at $75^{\circ} \mathrm{C}$ is put into a 20 gram sample of water at $10^{\circ} \mathrm{C}$. What is the final temperature of the system after the copper releases all its extra heat?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \operatorname{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)(120 \mathrm{~g})(0.385)\left(\mathrm{x}-75^{\circ} \mathrm{C}\right)=-(20 \mathrm{~g})(4.18)\left(\mathrm{x}-10^{\circ} \mathrm{C}\right) \quad \mathrm{T}_{\mathrm{f}}=33.1^{\circ} \mathrm{C}$ 8. 100 g of water at $22^{\circ} \mathrm{C}$ was combined with 20 grams of ice. The final temperature of the system was $6{ }^{\circ} \mathrm{C}$. Calculate the heat of fusion of ice based upon this data.
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \operatorname{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mL}_{\mathrm{f}} \quad(100 \mathrm{~g})(4.18)\left(6-22^{\circ} \mathrm{C}\right)=-(20 \mathrm{~g})(\mathrm{x}) \quad \mathrm{L}_{\mathrm{f}}=334.4 \mathrm{~J} / \mathrm{g}$
8. 200 g of water at $22{ }^{\circ} \mathrm{C}$ was combined with 15 grams of ice. Knowing that the heat of fusion of ice is $333 \mathrm{~J} / \mathrm{g}$, calculate the final temperature of the system.
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mL}_{\mathrm{f}} \quad(200 \mathrm{~g})(4.18)\left(\mathrm{x}-22^{\circ} \mathrm{C}\right)=-(15 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g}) \quad \mathrm{T}_{\mathrm{f}}=16{ }^{\circ} \mathrm{C}$
9. Suppose you heat a 50 g piece of silver to $99.8^{\circ} \mathrm{C}$ and then drop it onto ice. When the metal's temperature has dropped to $0{ }^{\circ} \mathrm{C}$, it is found that 3.54 g of ice has melted. What is the specific heat capacity of silver?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mL}_{\mathrm{f}} \quad(50 \mathrm{~g})(\mathrm{x})\left(0-99.8^{\circ} \mathrm{C}\right)=-(3.54 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g}) \quad \mathrm{c}=0.236 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
10. A 9.36 g piece of Pt is heated to $98.6^{\circ} \mathrm{C}$ and then dropped onto a block of ice. When the temperature of the metal has dropped to $0^{\circ} \mathrm{C}$, it is found that 0.37 g of ice melted. What is the specific heat capacity of Pt?
$\mathrm{Q}_{\text {lost }}=-\mathrm{Q}_{\text {gain }} \quad \mathrm{mc}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=-\mathrm{mL}_{\mathrm{f}} \quad(9.36 \mathrm{~g})(\mathrm{x})\left(0-98.6^{\circ} \mathrm{C}\right)=-(0.37 \mathrm{~g})(333 \mathrm{~J} / \mathrm{g}) \mathrm{T}_{\mathrm{f}}=0.134 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
11. Describe each of the reactions below as either endothermic or exothermic. Some are tricky, be careful. Decide whether heat is entering or leaving the system in question:

	A. Exploding fireworks	endothermic
	exothermic	
B. Melting snow	endothermic	exothermic
C. Lava cooling	endothermic	exothermic
D. Paper burning	endothermic	exothermic
E. An ice cube freezing	endothermic	exothermic
F. Water evaporating	endothermic	exothermic

Enthalpy Problems

1. For the equation: $\quad \mathrm{Mg}+1 / 2 \mathrm{CO}_{2} \rightarrow \mathrm{MgO}+1 / 2 \mathrm{C}$

If 16.7 kJ of heat is given off per 1.0 gram of magnesium reacted, calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\mathrm{Q}_{\mathrm{rxn}} /$ moles $\quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-16.7 \mathrm{~kJ} / 0.0411$ moles $=-406 \mathrm{~kJ} / \mathrm{mole}$
2. For the equation: $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}$

If 3 grams of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ gives off 3.57 kJ of energy, calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ $\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=\mathrm{Q}_{\mathrm{rxn}} /$ moles $\quad \Delta \mathrm{H}_{\mathrm{rxn}}^{0}=-3.57 \mathrm{~kJ} / 0.0119$ moles $=-300 \mathrm{~kJ} / \mathrm{mole}$
3. For the equation: $\quad \mathrm{Na}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+1 / 2 \mathrm{H}_{2}$

If 5 grams of sodium is placed into 100 grams of water at $20^{\circ} \mathrm{C}$ and the final temperature of the system reaches $27^{\circ} \mathrm{C}$, calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=\mathrm{Q}_{\mathrm{rxn}} /$ moles $\quad \mathrm{Q}_{\mathrm{rxn}}=-\mathrm{Q}_{\text {water }}=-(100 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(7^{\circ} \mathrm{C}\right)=-2926 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-2926 \mathrm{~J} / 0.217$ moles $=-13.5 \mathrm{~kJ} /$ mole
4. For the equation: $\quad \mathrm{Ca}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2}$

If 2 grams of calcium is placed into 75 mL of 1 M HCl at $18{ }^{\circ} \mathrm{C}$ and the final temperature of the system reaches $23{ }^{\circ} \mathrm{C}$, calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$. (Assume the density of the solution is $1 \mathrm{~g} / \mathrm{mL}$ and the specific heat capacity of the $\left.\mathrm{HCl}=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{0}=\mathrm{Q}_{\mathrm{rxn}} /$ moles $\quad \mathrm{Q}_{\mathrm{rxn}}=-\mathrm{Q}_{\text {water }}=-(75 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(5^{\circ} \mathrm{C}\right)=-1567.5 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-1567.5 \mathrm{~J} / 0.0499$ moles $=-31.4 \mathrm{~kJ} / \mathrm{mole}$
5. For the equation: $\quad \mathrm{NaNO}_{3}(\mathrm{~s}) \rightarrow \mathrm{NaNO}_{3}$ (aq)

If 20 grams of NaNO_{3} were placed into 200 grams of water at $22^{\circ} \mathrm{C}$, and the temperature dropped to $12{ }^{\circ} \mathrm{C}$,
what is the $\Delta \mathrm{H}_{\mathrm{rxn}}$?
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=\mathrm{Q}_{\mathrm{rxn}} /$ moles $\quad \mathrm{Q}_{\mathrm{rxn}}=-\mathrm{Q}_{\text {water }}=-(200 \mathrm{~g})\left(4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(-10^{\circ} \mathrm{C}\right)=+8360 \mathrm{~J}$
$\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=+8360 \mathrm{~J} / 0.235$ moles $=+35.6 \mathrm{~kJ} / \mathrm{mole}$

Bond Energies

1. Draw the Lewis Dot structures and determine the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:

$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma$ Bonds $_{\text {react }}-\Sigma$ Bonds $_{\text {prod }}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=(1046+242)-(2 * 339+745)=-135 \mathrm{~kJ}$
2. Draw the Lewis Dot structures for and determine the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:

$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma$ Bonds $_{\text {react }}-\Sigma$ Bonds $_{\text {prod }}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=(498+2 * 436)-(4 * 463)=-482 \mathrm{~kJ}$
3. Draw the Lewis Dot structures for and determine the energy for the $\mathrm{O}-\mathrm{F}$ bond for:

$$
\mathrm{OF}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+2 \mathrm{HF} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-318 \mathrm{~kJ}
$$

$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma$ Bonds $_{\text {react }}-\Sigma$ Bonds $_{\text {prod }}$
$-318=(2 \mathrm{X}+2 * 463)-(498+2 * 565)$
$\mathrm{X}=192 \mathrm{~kJ}$
4. For the reaction:

$$
\mathrm{O}_{3}+\mathrm{O} \rightarrow 2 \mathrm{O}_{2} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-394
$$

a. Draw the Lewis dot structures for all species

b. Calculate the $\mathrm{O}-\mathrm{O}$ bond energy in O_{3}
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma$ Bonds $_{\text {react }}-\Sigma$ Bonds $_{\text {prod }}$
$-394=(2 X)-(2 * 498)$
X $=301 \mathrm{~kJ}$
c. What is the bond order of the $\mathrm{O}-\mathrm{O}$ bond in O_{3} (remember it is a resonance structure)? Bond order $=1.5$
d. Compare the answer you got in part b to the $\mathrm{O}-\mathrm{O}$ bond energy and the $\mathrm{O}=\mathrm{O}$ bond energy you can look up. Does your answer make sense? Why or why not?
O-O bond = $146 \quad$ bond order $=1$
$\mathrm{O}=\mathrm{O}$ bond $=498 \quad$ bond order $=2$
O---O bond in O_{3} bond order 1.5 has energy of 301 kJ so that makes sense as it is between the 146 and 498 or the bond orders 1 and 2

Hess' Law Problems

1. Given the following equations:
$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{3}$
$1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{O}_{2}+1 / 2 \mathrm{H}_{2} \rightarrow \mathrm{HNO}_{3}$

$$
\begin{array}{llll}
\Delta \mathrm{H}_{\mathrm{rxn}}=-572 \mathrm{~kJ} & \mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{2}+1 / 2 \sigma_{2} & \Delta \mathrm{H}_{\mathrm{rxn}}=+286 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-74 \mathrm{~kJ} & 2 \mathrm{HNO}_{3} & \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{\mathrm{rxn}}=+74 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-174 \mathrm{~kJ} & \mathrm{~N}_{2}+3 \mathrm{O}_{2}+H_{2} & \rightarrow 2 \mathrm{HNO}_{3} & \mathrm{H}_{\mathrm{rxn}}=2(-174 \mathrm{~kJ})
\end{array}
$$

Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:
$\mathrm{N}_{2}+5 / 2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{5}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=+12 \mathrm{~kJ}$
2. Given the following equations:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{llll}
\Delta \mathrm{H}_{\mathrm{rxn}}=-92 \mathrm{~kJ} & 1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} & \rightarrow \mathrm{NH}_{又} & \Delta \mathrm{H}_{\mathrm{rxn}}=-46 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-906 \mathrm{~kJ} & \mathrm{NH}_{3}+5 / 4 \mathrm{O}_{2} & \rightarrow \mathrm{NO}+3 / 2 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{H}_{\mathrm{rxn}}=-226 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-242 \mathrm{~kJ} & 3 / 2 \mathrm{H}_{2} \mathrm{O} & \rightarrow 3 / \mathrm{H}_{2}+3 / 4 \mathrm{Q}_{2} \Delta \mathrm{H}_{\mathrm{rxn}}=+363 \mathrm{~kJ}
\end{array}
$$

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:
$1 / 2 \mathrm{~N}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{NO}$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=+91 \mathrm{~kJ}
$$

3. Given the following equations:

$$
\begin{aligned}
& \mathrm{Sr}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrO} \\
& \mathrm{SrO}+\mathrm{CO}_{2} \rightarrow \mathrm{SrCO}_{3} \\
& \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}
\end{aligned}
$$

$$
\begin{array}{lll}
\Delta \mathrm{H}_{\mathrm{rxn}}=-592 \mathrm{~kJ} & \mathrm{Sr}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrQ} & \Delta \mathrm{H}_{\mathrm{rxn}}=-592 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-234 \mathrm{~kJ} & \mathrm{SrQ}+\mathrm{CO}_{2} \rightarrow \mathrm{SrCO}_{3} & \Delta \mathrm{H}_{\mathrm{rxn}}=-234 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-394 & \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} & \Delta \mathrm{H}_{\mathrm{rxn}}=-394
\end{array}
$$

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:
$\mathrm{Sr}+\mathrm{C}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{SrCO}_{3} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-1220 \mathrm{~kJ}$
4. Given the following equations:

$$
\begin{aligned}
& \mathrm{C}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4} \\
& \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4} \\
& \mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
\end{aligned}
$$

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:
$\mathrm{CH}_{4}+4 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+4 \mathrm{HCl}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=-205 \mathrm{~kJ}$

$$
\begin{array}{lll}
\Delta \mathrm{H}_{\mathrm{rxn}}=-75 \mathrm{~kJ} & \mathrm{CH}_{4} \rightarrow \mathrm{C}+2 \mathrm{H}_{2} & \Delta \mathrm{H}_{\mathrm{rxn}}=+75 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-96 \mathrm{~kJ} & \mathrm{C}+2 \mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4} & \Delta \mathrm{H}_{\mathrm{rxn}}=-96 \mathrm{~kJ} \\
\Delta \mathrm{H}_{\mathrm{rxn}}=-92 \mathrm{~kJ} & 2 \mathrm{H}_{2}+2 \mathrm{Cl}_{2} \rightarrow 4 \mathrm{HCl} & \Delta \mathrm{H}_{\mathrm{rxn}}=2(-92) \mathrm{kJ}
\end{array}
$$

5. Given the following equations:

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \\
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-3506 \mathrm{~kJ} 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \Delta \mathrm{H}_{\mathrm{rxn}}=+3506 \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-394 \mathrm{~kJ} \quad 5 \mathrm{C}+5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CQ}_{2} \quad \Delta \mathrm{H}_{\mathrm{rxn}}=5(-394) \mathrm{kJ}
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-484 \mathrm{~kJ} \quad 6 \mathrm{H}_{2}+3 \mathrm{O}_{2} \rightarrow 6 \mathrm{Q}
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=3(-484) \mathrm{kJ}
$$

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for:
$5 \mathrm{C}+6 \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}$

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

1. For each of the substances below, write a balanced equation showing the formation of 1 mole of the compound from its elements in their standard states. Look up the value for $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ in the Appendix in the back of a book or online.
a) $\mathrm{Al}_{2} \mathrm{O}_{3} \quad 2 \mathrm{Al}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=-1676 \mathrm{~kJ} / \mathrm{mole}$
b) $\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{Mg}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=-925 \mathrm{~kJ} / \mathrm{mole}$
c) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$12 \mathrm{C}(\mathrm{s})+11 \mathrm{H}_{2}(\mathrm{~g})+11 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s}) \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}=-2226 \mathrm{~kJ} / \mathrm{mole}$
d) NaHCO_{3}

$$
\mathrm{Na}(\mathrm{~s})+1 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaHCO}_{3}(\mathrm{~s}) \Delta \mathrm{H}_{\mathrm{f}}^{0}=-951 \mathrm{~kJ} / \mathrm{mole}
$$

2. For each of the reactions below, calculate $\Delta \mathrm{H}^{\mathrm{o}} \mathrm{rxn}$. Look up the values for $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ in the Appendix in the back of a book or online.
a) $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=(-396)-(-297)=-99 \mathrm{~kJ}$
b) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=[4(91)+6(-242)]-4(-46)=-904 \mathrm{~kJ}$
c) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=[(82)+2(-242)]-(-366)=-36 \mathrm{~kJ}$
3. Nitroglycerin is a powerful explosive that explodes by the following equation while giving off 4200 kJ of heat.
$\mathrm{C}_{3} \mathrm{H}_{5}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow 3 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 4 \mathrm{O}_{2}(\mathrm{~g})+3 \mathrm{CO}_{2}(\mathrm{~g})+5 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Calculate the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ of nitroglycerin. $-4200 \mathrm{~kJ}=[3(-394)+5 / 2(-242)]-\mathrm{x} \quad \mathrm{x}=2413 \mathrm{~kJ}$
4. Oxygen difluoride reacts with water vapor to produce 318 kJ of heat by the following equation:

$$
\mathrm{OF}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Calculate the $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ of $\mathrm{OF}_{2} \quad-318 \mathrm{~kJ}=[2(-273)]-[\mathrm{x}+(-242)] \quad \mathrm{x}=14 \mathrm{kj}$
5. Large scale H_{2} can be made by the following 3 steps:

Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}$ of each step. Calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}$ of the overall reaction. Is the overall reaction endo or exothermic?
Endothermic

Bomb Calorimetry

1. You burn 0.300 g of C in an excess of O_{2} in a bomb calorimeter. The temperature of the calorimeter which contains 775 grams of water increases from 25 to $27.38^{\circ} \mathrm{C}$. The heat capacity of the bomb is $893 \mathrm{~J} / \mathrm{K}$. What is $\Delta \mathrm{H}_{\mathrm{rxn}}$ per mole of carbon?
$\mathrm{Q}_{\mathrm{rxn}}=-\left[\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {bomb }}\right]=-\left[\mathrm{mc} \Delta \mathrm{T}_{\text {water }}+\mathrm{k} \Delta \mathrm{T}_{\text {bomb }}\right]$
$\mathrm{Q}_{\mathrm{rxn}}=-\left[(775 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{gC})\left(2.38{ }^{\circ} \mathrm{C}\right)+(893 \mathrm{~J} / \mathrm{K})(2.38 \mathrm{~K})\right]=-9.835 \mathrm{~kJ}$
$0.30 \mathrm{~g} \mathrm{C} *(1 \mathrm{~mole} / 12 \mathrm{~g})=0.025$ moles C
$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{q} / \mathrm{mole}=-9.835 \mathrm{~kJ} / 0.025 \mathrm{~mole}=-393 \mathrm{~kJ} / \mathrm{mole}$
2. You burn 1.50 g of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}\right)$ in a bomb calorimeter which has a constant of $789 \mathrm{~J} / \mathrm{K}$. The calorimeter is filled with 775 g of water and the temperature increases from 22.50 to $31.69{ }^{\circ} \mathrm{C}$. What is $\Delta \mathrm{H}_{\mathrm{rxn}}$ per mole of benzoic acid?
$\mathrm{Q}_{\mathrm{rxn}}=-\left[\mathrm{q}_{\text {water }}+\mathrm{q}_{\text {bomb }}\right]=-\left[m c \Delta \mathrm{~T}_{\text {water }}+\mathrm{k} \Delta \mathrm{T}_{\text {bomb }}\right]$
$\mathrm{Q}_{\mathrm{rxn}}=-\left[(775 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{gC})\left(9.19^{\circ} \mathrm{C}\right)+(789 \mathrm{~J} / \mathrm{K})(9.19 \mathrm{~K})\right]=-37.0 \mathrm{~kJ}$
$1.50 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H} *(1 \mathrm{~mole} / 122 \mathrm{~g})=0.0123$ moles $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$
$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{q} / \mathrm{mole}=-37 \mathrm{~kJ} / 0.0123 \mathrm{~mole}=-3008 \mathrm{~kJ} / \mathrm{mole}$

Entropy Problems

1. Without doing any calculations, determine the sign of each of the entropy changes below:
a. $\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
$\Delta S=$ negative
b. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{S}=$ negative
c. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{S}=$ positive
d. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{S}=$ positive
2. Calculate the $\Delta \mathrm{S}^{0}$ of each of the above equations and compare the value to your predictions from \#1.
a. $\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
$\Delta \mathrm{S}=(90)-[(33)+(223)]=-166 \mathrm{~J} / \mathrm{K}$
b. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta S=[2(193)]-[(153)+3(131)]=-160 \mathrm{~J} / \mathrm{K}$
c. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{S}=[2(131)+205]-[2(70)]=+327 \mathrm{~J} / \mathrm{K}$
d. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{S}=[2(83)+3(205)]-[2(143)]=+495 \mathrm{~J} / \mathrm{K}$
3. Summarize each of the laws of Thermodynamics:
a. $1^{\text {st }}$ Law of Thermodynamics:
b. $2^{\text {nd }}$ Law of Thermodynamics:
c. $3^{\text {rd }}$ Law of Thermodynamics:
$\Delta E=q+w$
$\Delta S_{\text {universe }}>0$ for a spontaneous rxn
$\Delta \mathrm{S}$ of a perfect crystal at 0 Kelvin is 0
4. List three things the entropy value of a substance depends upon:
a. Temperature
b. State of matter
c. Molecular complexity
5. Define entropy. A measure of the energy randomization or energy dispersal in a system (disorder)

Spontaneity and Gibb's Free Energy

1. Describe how the sign of $\Delta \mathrm{G}$ determines the spontaneity of a reaction:
a. $\Delta \mathrm{G}>0$ Non-spontaneous (positive)
b. $\Delta \mathrm{G}<0 \quad$ Spontaneous (negative)
c. $\Delta \mathrm{G}=0$ At equilibrium
2. Given the following thermodynamic values, determine how temperature effects the spontaneity of the reaction. Is the reaction enthalpy driven, entropy driven, both, or neither.

| a. $\Delta \mathrm{H}=+327 \mathrm{~kJ} / \mathrm{mol}$ | $\Delta \mathrm{S}=+127 \mathrm{~J} / \mathrm{molK}$ | enthalpy driven | | entropy driven | both | neither |
| :--- | :--- | ---: | :--- | ---: | :--- | ---: | :--- |
| b. $\Delta \mathrm{H}=-187 \mathrm{~kJ} / \mathrm{mol}$ | $\Delta \mathrm{S}=-298 \mathrm{~J} / \mathrm{molK}$ | enthalpy driven | entropy driven | both | neither | |
| c. $\Delta \mathrm{H}=+194 \mathrm{~kJ} / \mathrm{mol}$ | $\Delta \mathrm{S}=-4 \mathrm{~J} / \mathrm{molK}$ | enthalpy driven | entropy driven | both | neither | |
| c. $\Delta \mathrm{H}=-397 \mathrm{~kJ} / \mathrm{mol}$ | $\Delta \mathrm{S}=+653 \mathrm{~J} / \mathrm{molK}$ | enthalpy driven | entropy driven | both | neither | |

3. For each reaction below, determine the temperature at which the reaction will be spontaneous.
a. $\Delta \mathrm{H}=+245 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}=+48 \mathrm{~J} / \mathrm{molK} \quad \mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=245 / 0.048 \mathrm{~T}>5104 \mathrm{~K}$ spontaneous
b. $\Delta \mathrm{H}=+187 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}=+365 \mathrm{~J} / \mathrm{molK} \quad \mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=187 / 0.365 \mathrm{~T}>512 \mathrm{~K}$ spontaneous
c. $\Delta \mathrm{H}=-456 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}=-38 \mathrm{~J} / \mathrm{molK} \quad \mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=-456 /-0.038 \mathrm{~T}<12000 \mathrm{~K}$ spontaneous
d. $\Delta \mathrm{H}=-547 \mathrm{~kJ} / \mathrm{mol} \quad \Delta \mathrm{S}=-97 \mathrm{~J} / \mathrm{molK} \quad \mathrm{T}=\Delta \mathrm{H} / \Delta \mathrm{S}=-547 /-0.097 \mathrm{~T}<5639 \mathrm{~K}$ spontaneous
4. Define Gibb's Free Energy The energy available to do work in a thermodynamic system
5. Using the values of $\Delta \mathrm{G}^{0}$, calculate the $\Delta \mathrm{G}_{\mathrm{rxn}}^{\mathrm{o}}$ of each of the equations below. Is each reaction spontaneous at standard conditions?
a. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
b. $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g})$
c. $3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
d. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
$\Delta \mathrm{G}=[2(51)]-[100]=2 \mathrm{~kJ}$ Non-spontaneous
$\Delta \mathrm{G}=[(-95)+(-16)]-[-203]=92 \mathrm{~kJ}$ Non-spontan
$\Delta \mathrm{G}=[3(-229)]-[-742]=55 \mathrm{~kJ}$ Non-spontaneous
$\Delta G=[2(-16)]-[0]=-32 \mathrm{~kJ}$ Spontaneous

Energy \& Voltage

1. Write the equation that relates $\Delta \mathrm{G}^{0}$ and E^{0} ? $\Delta \mathrm{G}^{0}=-\mathrm{nFE}{ }^{0}$
2. What is n ? the number of moles of electrons transferred
3. What is F? Faraday's constant, $96500 \mathrm{~J} /$ voltmole
4. For each of the following equations, what must n be?
a. $\mathrm{Cu}^{+2}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{+2}+\mathrm{Cun}=2$
b. $2 \mathrm{Ag}^{+1}+\mathrm{Sn} \rightarrow \mathrm{Sn}^{+2}+2 \mathrm{Ag} \mathrm{n}=2$
c. $2 \mathrm{Al}+3 \mathrm{~Pb}^{+2} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}^{+3} \mathrm{n}=6$
5. What is the $\Delta \mathrm{G}^{0}$ of the following batteries?
a. $\mathrm{Cu}^{+2}+\mathrm{Mg} \rightarrow \mathrm{Mg}^{+2}+\mathrm{Cu}$
$\mathrm{E}^{\mathrm{o}}=2.71 \mathrm{~V} \Delta \mathrm{G}^{\mathrm{o}}=-(2 \mathrm{moles})(96500 \mathrm{~J} / \mathrm{Vmol})(2.71 \mathrm{~V})=-523 \mathrm{~kJ}$
b. $2 \mathrm{Ag}^{+1}+\mathrm{Sn} \rightarrow \mathrm{Sn}^{+2}+2 \mathrm{Ag}$
$\mathrm{E}^{\mathrm{o}}=0.94 \mathrm{~V} \Delta \mathrm{G}^{\mathrm{o}}=-(2 \mathrm{moles})(96500 \mathrm{~J} / \mathrm{Vmol})(0.94 \mathrm{~V})=-181 \mathrm{~kJ}$
c. $2 \mathrm{Al}+3 \mathrm{~Pb}^{+2} \rightarrow 3 \mathrm{~Pb}+2 \mathrm{Al}^{+3}$
$\mathrm{E}^{\mathrm{o}}=1.53 \mathrm{~V} \Delta \mathrm{G}^{\mathrm{o}}=-(6 \mathrm{moles})(96500 \mathrm{~J} / \mathrm{Vmol})(1.53 \mathrm{~V})=-886 \mathrm{~kJ}$
6. What sign must each of the following be for a battery?
a. E^{o} positive
b. $\Delta \mathrm{G}^{\mathrm{o}}$ negative

Combination Thermo Problems

1. For the reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-114.1 \mathrm{~kJ} \Delta \mathrm{~S}_{\mathrm{rxn}}=-146.5 \mathrm{~J} / \mathrm{K}$
a. How much heat is released when 73.1 g of NO is converted to NO_{2} ?
$73.1 \mathrm{~g} \mathrm{NO} *(1 \mathrm{~mole} / 30 \mathrm{~g})=2.44$ moles $\mathrm{NO} *(-114.1 \mathrm{~kJ} / 2 \mathrm{~mole} \mathrm{NO})=-139 \mathrm{~kJ}$
b. Indicate whether the value of $\Delta \mathrm{G}_{\mathrm{rxn}}$ would become more negative, less negative, or remain unchanged as the temperature is increased. Justify your answer.
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad$ since $\Delta \mathrm{S}$ is negative, as T increased, it will make $\Delta \mathrm{G}$ more positive as you subtract a negative value making it more positive
c. The value of $S^{\circ}=210.8 \mathrm{~J} / \mathrm{Kmol}$ for NO . The value of $\mathrm{S}^{\mathrm{o}}=240.1 \mathrm{~J} / \mathrm{Kmol}$ for NO_{2}. Calculate the value of S^{0} for O_{2}
$\Delta \mathrm{S}=\left(2 * \mathrm{~S}_{\mathrm{NO} 2}\right)-\left(2 * \mathrm{~S}_{\mathrm{NO}}+\mathrm{S}_{\mathrm{O} 2}\right)$
$-146.5=(2 * 240.1)-(2 * 210.8+X)$
$\mathrm{X}=205 \mathrm{~J} / \mathrm{K}$
d. The bond energy of the $\mathrm{N}-\mathrm{O}$ bond in NO is $607 \mathrm{~kJ} / \mathrm{mol}$. The bond energy of the O-O bond in O_{2} is $495 \mathrm{~kJ} / \mathrm{mol}$. Calculate the bond energy of the $\mathrm{N}-\mathrm{O}$ bond in NO_{2}.
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma$ Bonds $_{\text {react }}-\Sigma$ Bonds $_{\text {prod }}$
$-114.1=(2 * 607+495)-2(2 * X)$
$\mathrm{X}=456 \mathrm{~kJ} / \mathrm{mole}$
2. For the substance propane, $\mathrm{C}_{3} \mathrm{H}_{8}$:
a. Write a balanced equation for the complete combustion of propane with oxygen to yield carbon dioxide and water.
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
b. Calculate the volume of air at $30^{\circ} \mathrm{C}$ and 1.0 atm that is needed to burn completely 10.0 grams of propane. Assume that air is $21 \% \mathrm{O}_{2}$.
$10 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} *(1 \mathrm{~mole} / 44 \mathrm{~g})=0.227$ moles $\mathrm{C}_{3} \mathrm{H}_{8} *\left(5 \mathrm{~mole} \mathrm{O}_{2} / 1 \mathrm{~mole}_{3} \mathrm{H}_{8}\right)=1.136$ mole O_{2} $\mathrm{V}=\mathrm{nRT} / \mathrm{P}=(1.136 \mathrm{~mole})(0.0821)(303 \mathrm{~K}) /(1 \mathrm{~atm})=28.3 \mathrm{~L}$ of O_{2} needed
Since air is only $21 \% \mathrm{O}_{2}$ you need 134.6 L air
c. The heat of combustion of propane is $-2220.1 \mathrm{~kJ} / \mathrm{mole}$. Knowing that $\Delta \mathrm{H}_{\mathrm{f}}=-285.3$
$\mathrm{kJ} /$ mole for $\mathrm{H}_{2} \mathrm{O}$ and $\Delta \mathrm{H}_{\mathrm{f}}=-393.5 \mathrm{~kJ} / \mathrm{mole}$ for CO_{2}, calculate the $\Delta \mathrm{H}_{\mathrm{f}}$ for propane.

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} \text { prod }-\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}} \text { react } \\
& \Delta \mathrm{H}_{\mathrm{rxn}}=\left(3 * \mathrm{CO}_{2}+4 * \mathrm{H}_{2} \mathrm{O}\right)-\mathrm{X} \\
& -2220.1=\left(3^{*}(-393.5)+4 *(-285.3)\right)-\mathrm{X} \\
& -2220.1=-1180.5-1141.2-\mathrm{X} \\
& \mathrm{X}=-101.6 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
$$

d. Assuming that all of the heat evolved in burning 30.0 grams of propane is transferred to 8.00 kg of water $\left(\mathrm{C}_{\text {water }}=4.18 \mathrm{~J} / \mathrm{gK}\right)$, calculate the increase in temperature of the water.
0.682 moles $\mathrm{C}_{3} \mathrm{H}_{8} *(-2220.1 \mathrm{~kJ} / \mathrm{mole})=-1514 \mathrm{~kJ}$ or 1514000 J given to water
$\mathrm{q}_{\text {water }}=\mathrm{mc} \Delta \mathrm{T} \quad 1514000 \mathrm{~J}=(8000 \mathrm{~g})(4.18 \mathrm{~J} / \mathrm{gK}) \Delta \mathrm{T} \quad \Delta \mathrm{T}=45.3^{\circ} \mathrm{C}$
3. For the reaction: $2 \mathrm{Fe}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}_{\mathrm{f}}=-824 \mathrm{~kJ} / \mathrm{mol}$

A 75.0 g sample of Fe is mixed with $11.5 \mathrm{~L}^{\text {of }} \mathrm{O}_{2}$ at 2.66 atm and 298 K .
a. Calculate the number of moles of:
i) $\mathrm{Fe} \quad 1.34$ moles
ii) $\mathrm{O}_{2} \quad 1.25$ moles
b. Identify the limiting reagent. Justify your answer.

Try to use all 1.34 moles of Fe :
1.34 moles $\mathrm{Fe} *\left(3 / 2\right.$ moles $\mathrm{O}_{2} / 2$ moles Fe$)=1.005$ moles O_{2} needed which we have enough of so Fe is limiting reagent
c. Calculate the number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produced if the reaction goes to completion.
1.34 moles $\mathrm{Fe} *\left(1\right.$ mole $\mathrm{Fe}_{2} \mathrm{O}_{3} / 2$ mole Fe$)=0.67$ moles $\mathrm{Fe}_{2} \mathrm{O}_{3}$
d. If $\Delta \mathrm{G}_{\mathrm{f}}=-740 \mathrm{~kJ} / \mathrm{mole}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$:
i) Calculate the $\Delta \mathrm{S}_{\mathrm{f}}$ for $\mathrm{Fe}_{2} \mathrm{O}_{3}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$-740,000 \mathrm{~J}=-824000 \mathrm{~J}-(298 \mathrm{~K}) \Delta \mathrm{S}$
$\Delta \mathrm{S}=-282 \mathrm{~J} / \mathrm{K}$
ii) Which is more responsible for the spontaneity of the reaction, the enthalpy or the entropy? Justify your answer.
Enthalpy $(\Delta \mathrm{H})$ tends to be negative for spontaneous reactions
Entropy ($\Delta \mathrm{S}$) tends to be positive for spontaneous reactions
Since the enthalpy is negative and the entropy is negative, the reaction is enthalpy-driven only
e. Knowing that: $\quad 2 \mathrm{FeO}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}_{\mathrm{rxn}}=-280 \mathrm{~kJ}$

Calculate $\Delta \mathrm{H}_{\mathrm{f}}$ of FeO (s)
$\Delta \mathrm{H}_{\mathrm{rxn}}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ prod $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\mathrm{o}}$ react
$\Delta \mathrm{H}_{\mathrm{rxn}}=\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)-2 *(\mathrm{FeO})$
$-280=(-824)-2 \mathrm{X}$
$2 \mathrm{X}=-544$
$\mathrm{X}=-272 \mathrm{~kJ} / \mathrm{mole}$
4. Consider pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12} \quad\right.$ MW $\left.=72.15 \mathrm{~g} / \mathrm{mole}\right)$
a. Write the balanced equation for the combustion of pentane to yield CO_{2} and $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
b. What volume of CO_{2} at $25^{\circ} \mathrm{C}$ and 785 mm Hg will result from combustion of 2.5 g of pentane?
$2.5 \mathrm{~g} *(1 \mathrm{~mole} / 72.15 \mathrm{~g})=0.03465$ moles $\mathrm{C}_{5} \mathrm{H}_{12} *\left(5 \mathrm{~mole} \mathrm{CO}_{2} / 1 \mathrm{~mole}_{5} \mathrm{H}_{12}\right)=0.173$ mole CO_{2} $\mathrm{V}=\mathrm{nRT} / \mathrm{P}=\left(0.173 \mathrm{~mole} \mathrm{CO}_{2}\right)(0.0821)(298 \mathrm{~K}) /(1.033 \mathrm{~atm})=4.103 \mathrm{~L}$
c. Combustion of 5 g of pentane releases 243 kJ of heat. Calcualte $\Delta \mathrm{H}_{\text {combustion }}$ pentane.
$\Delta \mathrm{H}=\mathrm{q} /$ mole
$5 \mathrm{~g} \mathrm{C}_{5} \mathrm{H}_{12}{ }^{*}(1 \mathrm{~mole} / 72.15 \mathrm{~g})=0.0693$ moles
$\Delta \mathrm{H}=(-243 \mathrm{~kJ} / 0.0693 \mathrm{~mole})=-3506 \mathrm{~kJ} / \mathrm{mole}$
d. Under identical conditions, an unknown gas effuses twice as fast as pentane. Calculate the molar mass of this gas.
Rate $\mathrm{X} /$ Rate $\mathrm{C}_{5} \mathrm{H}_{12}=(72.15 / \mathrm{X})^{1 / 2}$
$2 / 1=(72.15 / \mathrm{X})^{1 / 2}$
$\mathrm{X}=18 \mathrm{~g} / \mathrm{mole}$
e. Draw three structural isomers of pentane.

