AP Chemistry Study Guide: Unit 0 and 1

Please answer the following on a separate sheet of paper.

- 1. Classify the following as either *chemical* or *physical* changes.
 - a. Ice melting
 - b. Gasoline burning
 - c. Evaporation of perfume from an open bottle
- 2. Mercury is a liquid metal that has a density of 13.58 g/mL. Calculate the volume of mercury that must be poured out in order to obtain 0.5000 g of mercury.
- 3. Convert these numbers to scientific notation.
 - a. 35000000000000
 - b. 0.0000000821
- 4. Round the following numbers to four figures.
 - a. 4.000474 x 10⁶
 - b. 3.682417
 - c. 7.2518
- 5. Use dimensional analysis to perform the following conversions.
 - a. 0.75 kg to mg
 - b. 0.52 nm to km
- Suppose an experiment is performed in which the molar mass of a gas is found to be 48.45 g mol⁻¹. The actual value is 52.9 g mol⁻¹. Calculate the percent error.
- 7. Consider the following pairs. Does either pair represent a pair of isotopes? *Explain*.
 - a. $^{23}_{11}$ Na and $^{23}_{11}$ Na
 - b. ${}^{24}_{11}$ Na and ${}^{24}_{12}$ Mg
- 8. Determine the number of protons, electrons and neutrons in each of the following isotopes.
 - a. ¹⁷¹₇₉Au
 - b. $^{79}_{35}Br^{-}$
- 9. Give the missing formula or name.

Formula	Name
Pb ₃ N ₂	
SF ₆	
(NH4)2CO3	

Phosphorus pentachloride
Potassium hydrogen carbonate
Iron(III) oxide

- 10. A 52.00-g sample of a hydrocarbon (a compound that contains the elements hydrogen and carbon) was analyzed and found to contain 43.74 g of carbon.
 - a. How many grams of hydrogen are present in this sample?
 - b. Determine the percentage composition for each element in this compound.
 - c. How many grams of each element are present in a 31.00-g sample?
 - d. Determine the empirical formula for this compound.
 - e. The molar mass of this compound is 114 g mol⁻¹. Determine the molecular formula for this compound.
- 11. How many atoms of hydrogen are in 32.59 g of water?
- 12. An electron moves from energy level 5 to level 3 in an atom of hydrogen.
 - a. Is energy absorbed or released?
 - b. Calculate the energy per photon associated with this transition.
 - c. Calculate the energy of one mole of these photons.
 - d. Determine the frequency and wavelength (in nm) of one photon of this light.
- 13. Give full <u>and</u> noble gas core method (condensed) electron configurations for the following.
 - a. Br
 - b. Cr
 - c. S²⁻
- 14. For each of the following sets, indicate which is *higher* in energy.
 - a. 1s, 2s
 - b. 2p, 3p
 - c. 4s, 3d_{yz}
 - d. 3p_x, 3p_y, 3p_z
- 15. An <u>atom</u> has two electrons in (n) = 1, eight electrons in (n) = 2 and seven electrons in (n) = 3. From this data, supply the following values (if insufficient information is given, say so).
 - a. Mass number
 - b. Atomic number
 - c. Electron configuration
- 16. Identify the element from the electron configurations of *atoms* shown below.
 - a. [Ne] 3s²3p²
 - b. [Ar] 4s²3d⁷
 - c. [Xe] 6s²
- 17. Give the symbol of the atom or ion represented by the following sets of atomic numbers and electron configurations.
 - a. 8, 1s²2s²2p⁴
 - b. 11, 1s²2s²2p⁶
 - c. 17, 1s²2s²2p⁶3s²3p⁶
 - d. 22, 1s²2s²2p⁶3s²3p⁶3d²

- 18. Give the electron configurations of the following transition metal ions.
 - a. Sc³⁺
 - b. Cr²⁺
 - c. Ni³⁺
- 19. Complete the following table.

Element	Charge on most common ion
Rb	
Cs	
Ga	
At	
Se	

- 20. Define ionization energy.
- 21. Using the metal magnesium as an example, write <u>two</u> separate equations to show the first and second ionization processes of magnesium.
- 22. Which of the following elements (one from each pair) would you expect to have the highest first ionization energy? Explain your answer.
 - a. Ca or Be?
 - b. Na or Ar?
- 23. Consider the table of the first four ionization energies for element A shown below.

lonization	1 st	2 nd	3 rd	4 th
Energy in kJ mol ⁻¹	578	1817	2745	11580

- a. In which group does element A appear on the periodic table?
- b. Predict the formula of the compound that A forms with fluorine.
- c. What is the minimum number of electrons that A must have?
- 24. Arrange the following species in order of *increasing* size: Rb⁺, Y³⁺, Br⁻, Kr, Sr²⁺ and Se²⁻.
- 25. Are there any atoms for which the second ionization energy is greater than the first? Explain.
- 26. Is it possible for two different *atoms* to be isoelectronic?
- 27. Is it possible for two different *anions* to be isoelectronic?
- 28. Define electron affinity.
- 29. Write an equation to summarize the process of *second* electron affinity of oxygen.

30. Consider the table of ionization energies for element X shown below.

Ionization	1 st	2 nd	3 rd	4 th	5 th	6 th
Energy in	737	1450	7732	10540	13360	17995
kJ/mol	101	1400	1102	10040	10000	11000

- a. In which group will X be found?
- b. Explain your answer to 'a' above.
- c. Predict the formula of X's bromide salt.
- 31. **Explain** carefully why rubidium tends to form only a +1 ion.
- 32. *Explain* carefully why elements in the same group react in similar ways.
- **33.** How would you expect the sizes of the hydrogen ion, H⁺, and the hydride ion, H⁻, to compare with that of the hydrogen atom?
- 34. How would you expect the sizes of the hydrogen ion, H⁺, and the hydride ion, H⁻, to compare to that of the helium atom?
- 35. Identify any isoelectronic species in the this list: Fe²⁺, Sc³⁺, Ca²⁺, F⁻, Co²⁺, Co³⁺, Sr²⁺, Cu⁺, Zn²⁺ and Al³⁺.
- 36. Arrange the following atoms into order of *increasing* first ionization energy: Sr, Cs, S, F and As.
- 37. What do you understand by the term, "shielding?"
- **38.** A hydrate of lithium perchlorate is dehydrated. Use the following data to determine the percent of water in the hydrate and the empirical formula:

ltem	Mass (g)
Crucible and lid	32.97 g
Crucible and hydrated compound	40.18 g
Crucible and dehydrated compound after 1 st heating	37.76 g
Crucible and dehydrated compound after 1 st heating	37.75 g