Physical change

- Composition stays the same
- Properties change
- Phase change, separate mixtures

Chemical change

- Composition changes
- New substances
- Typically produce heat, light, gas, precipitate, color change

- Homogeneous mixture with solute(s) and solvent
-Solute-substance present in smaller amount
-Solvent-substance present in larger amount

[^0]

Electrolytes

- Strong electrolytes completely dissociate in water $\rightarrow \mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- Weak electrolytes partially dissociate in water
$>\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
- Non electrolytes do not dissociate in water, molecules just separate from each other
$\rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq})$
- All soluble ionic compounds

All nitrates are soluble
2. Alkali metals ions and $\mathrm{NH}_{4}{ }^{+}$ions are soluble
. Halides are soluble except $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, and $\mathrm{Hg}_{2}{ }^{2+}$
4. Most sulfates are soluble, except $\mathrm{Pb}^{2+}, \mathrm{Ba}^{2+}$, $\mathrm{Hg}_{2}{ }^{2+}$, and Ca^{2}
5. Most hydroxides and sulfides are slightly
. Most carbonates, chromates, and phosphates are insoluble

- Strong bases (soluble hydroxides)

- Strong acids $\left(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{3}\right.$, $\mathrm{HClO}_{4}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$)
-Hydrochloric, hydrobromic, hydroiodic, chloric, percloric, nitric, sulfuric

Electrolytes and conductivity

- Acids that are not strong acids (like $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HF}$, etc)
- NH_{3} (weak electrolyte base)
- $\mathrm{H}_{2} \mathrm{O}$

Weak electrolytes

Practice 1
Strong, weak, or nonelectrolyte?

1. Lead (II) iodide
2. Hydrochloric acid
3. Silver chloride
4. Sodium hydroxide
5. Magnesium hydroxide
6. Nitrous acid

- Calcium carbonate

5. Ammonium phosphate
6. Acetic acid

Equations

- Balanced equations represent processes
- Write an equation for boiling water
- Write an equation for the combustion of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$.
- Must balance eqns because of conservation of matter/mass

- Molecular equations show complete chemical formulas of reactants and products $\rightarrow \mathrm{BaCl}_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{KCl}(\mathrm{aq})$
-Skeleton equations are unbalanced

Types of equations

- Complete ionic equations show all soluble strong electrolytes as ions
$-\mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{~K}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow$ $\mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
- Net ionic equations includes only ions and molecules involved in reaction
\rightarrow Ignores spectator ions (play no direct role in reaction)
$-\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
- Sodium chloride (aq) and silver nitrate (aq) \rightarrow

- Physical changes involve changes in intermolecular interactions
$\rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (g)
- What intermolecular interactions are changed?
Chemical changes typically involve breaking and/or making chemical bonds
$\rightarrow \mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
- What bonds are broken? What bonds are made?

Practice 4

Stoichiometry with gas laws

1. A sample of solid CaO is placed in a 1.00 L vessel containing CO_{2} gas at a pressure of 730 . torr and a temperature of $25^{\circ} \mathrm{C}$. The CO_{2} reacts with the CaO , forming CaCO_{3}. When the reaction is complete, the pressure of the remaining CO_{2} is 150 . torr.
a. Write the balanced equation.
b. How many moles of CO_{2} reacted? 0.0312 mol
c. What mass of CaCO_{3} should have formed? 3.12 g

Practice 4

Stoichiometry with gas laws
2. Gaseous ammonia and gaseous hydrochloric acid react to form solid ammonium chloride.
a. Write the equation.
b. What volume of ammonia at 1.50 atm and 25 C is required to produce 50.0 g of ammonium chloride? 15.2 L

Acid-base titration

Practice 5

Titrations
$\Rightarrow \mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{HOH}(\mathrm{I})$ \{aka $\mathrm{H}_{2} \mathrm{O}$ \}

- 45.7 mL of 0.500 M NaOH is used to titrate a 25.0
mL sample of HCl solution with unknown concentration. What is the concentration of HCl ? 0.914 M HCl

1. 45.00 mL of 2.5 M NaOH is used to titrate 15.0 mL of an unknown concentration of HCl to its endpoint. What is the molarity of the HCl ? 7.5 M
2. A 50.00 mL sample of aqueous $\mathrm{Ca}(\mathrm{OH})_{2}$ is titrated to its endpoint with 34.66 mL of 0.0980 M nitric acid for neutralization. What is $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$? $0.0340 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$

Practice 5

Titrations
3. 75 mL of 0.25 M HCl is mixed with 225 mL of $0.055 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$. What is the concentration of the excess H^{+}or OH^{-}? $0.020 \mathrm{M} \mathrm{OH}^{-}$

Types of reactions

- Synthesis/combination
- Decomposition
- Combustion
- Single replacement
- Double replacement

Metathesis

New types of reactions

- Precipitation reactions
- Insoluble product is formed (see rules for non electrolytes)
$-\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{KI}(\mathrm{aq}) \rightarrow$
$\mathrm{PbI}_{2}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})$
- Combination/Synthesis $A+B \Rightarrow A B$
- Decomposition $\quad A B \Rightarrow A+B$
- Combustion
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{z}+\mathrm{O}_{2} \Rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- SR (metathesis)
$A+B C \Rightarrow B+A C$
- DR (metathesis)
$A B+C D \Rightarrow A D+C B$

Precipitation reactions

- Write formulas for the products
- Use solubility rules to predict the solubility of products
- Reaction occurs when 1 or more product is insoluble

Practice 6

Precipitation reactions

New types of reactions

- Acid-base reactions
-DR with acids and bases
- Proton is transferred in reaction
$-\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
$\rightarrow \mathrm{H}_{2} \mathrm{O}$ can act as acid or base
$\rightarrow \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \quad$ Acid
$\rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$Base

1. $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow$
2. $\mathrm{CaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \rightarrow$
3. A solution of sodium phosphate is added to a solution of aluminum nitrate
4. Solutions of silver nitrate and magnesium chloride are combined
5. A solution of copper (II) sulfate is added to a solution of lithium hydroxide

Practice 7

Acid-base reactions
New types of reactions

- Oxidation-reduction reactions (redox)
- Electrons transferred between reactants
- Indicated by changes in oxidation numbers
\rightarrow Combustion is also redox
. Calcium hydroxide reacts with hydrochloric acid

2. Acetic acid reacts with sodium hydroxide
3. Nitric acid reacts with sodium sulfide (one product is a gas)
4. Sulfuric acid reacts with sodium hydrogen carbonate $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right.$ is unstable and decomposes to $\mathrm{H}_{2} \mathrm{O}$ and CO_{2})

Oxidation numbers rules

Practice 8

Oxidation numbers

- Atoms in elemental form have ox \# of 0
- Ions have same ox \# as charge
- Oxygen is usually -2 (-1 in peroxides)
- Hydrogen is usually +1 (-1 when bonded to metals)
- Halogens are usually -1 (except with O)
- Sum of oxidation \#s in a compound = charge of compound
- Brønsted-Lowry acids are proton donors
- HCl loses H^{+}and becomes Cl^{-}

$$
>\mathrm{HCl} \Rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}
$$

- Br ønsted-Lowry bases are proton acceptors

$$
\mathrm{OH}^{-}+\mathrm{H}^{+} \Rightarrow \mathrm{HOH}\left(\mathrm{H}_{2} \mathrm{O}\right)
$$

- Water can act as acid and base
\downarrow Conjugate base is the base after the acid donates a proton
- Conjugate acid is the acid after the base accepts a proton

$$
\Rightarrow \mathrm{NH}_{3}+\mathrm{H}^{+} \Rightarrow \mathrm{NH}_{4}^{+}
$$

Acid-base reactions

$$
\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

Practice 9

Redox reactions

- Identify the acid, base, conjugate acid, and conjugate base:

1. $\mathrm{HBrO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{BrO}^{-}$
2. $\mathrm{HSO}_{4}^{-}+\mathrm{HCO}_{3}^{-} \rightarrow \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{CO}_{3}$
3. $\mathrm{HSO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$

- Use ox \# to determine which species is oxidized and which is reduced
- LEO says GER
- Lose Electrons Oxidation
-Gain Electrons Reduction

Practice 10

Redox reactions

- Complete and balance the reaction. Then indicate which element is oxidized and which is reduced.

1. $\mathrm{Br}_{2}(\mathrm{I})+\mathrm{K}(\mathrm{s}) \rightarrow$
2. $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$
3. $\mathrm{Zn}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$
4. $\mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow$

Redox half reactions

- Complete equation:
- Write net ionic equation:
$\rightarrow \mathrm{Ca}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(g)$
- Which element is oxidized? Ca Reduced? H

Redox half reactions

- Separate the oxidization and reduction parts
$\rightarrow \mathrm{Ca} \rightarrow \mathrm{Ca}^{2+}$
$\rightarrow 2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2}$
- Include electrons where needed
$\rightarrow \mathrm{Ca}_{\rightarrow} \mathrm{Ca}^{2+}+2 \mathrm{e}$
$\rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$

Practice 11

Redox half reactions

Practice 11

Redox half reactions

- Write the oxidation and reduction half reactions for the following:

1. $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{O}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+2 \mathrm{CO}_{2}(g)$
2. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq}) \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Cl}_{2}(g)$

Practice 11
Balance by half rxn in acidic conditions

1. Separate into half reactions
2. Balance easy atoms (not H or O)
3. Balance oxygens by adding waters
4. Balance hydrogens by adding H^{+}
5. Balance charges by adding electrons
6. Multiply half rxns to cancel out electrons

Example:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cr}^{3+}(\mathrm{aq})+\mathrm{Cl}_{2}(g)$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(\mathrm{aq})+6 \mathrm{Cl}^{-}(\mathrm{aq})+14 \mathrm{H}^{+} \rightarrow$
$2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{Cl}_{2}(g)+7 \mathrm{H}_{2} \mathrm{O}(l)$

Same steps as acidic solutions, but because it's in basic solution, not acidic, you can't have H^{+}. Neutralize all H^{+}with OH - on both sides, then continue

Practice 13
Balancing by half rxns in basic conditions

1. $\mathrm{NO}_{2}^{-}(\mathrm{aq})+\mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{Al}(\mathrm{OH})_{4}^{-}(\mathrm{aq})$
2. $\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+\mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+\mathrm{Cl}_{2}(g)$
3. $\mathrm{NO}_{2}^{-}(\mathrm{aq})+2 \mathrm{Al}(s)+5 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow$ $\mathrm{NH}_{3}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{OH})_{4}-(\mathrm{aq})$
4. $2 \mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s})+6 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{CrO}_{4}{ }^{2-}(\mathrm{aq})+$
$3 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{OH}^{-}(\mathrm{aq})$

[^0]: - When dissolved in water, electrolytes conduct electricity

