Rate law example with one reactant

Determine the rate law and calculate the rate constant k using the following experimental data.

Experiment number	Initial A concentration (M)	Observed initial rate (M/s)
1	0.0100	5.4 x 10 ⁻⁷
2	0.0200	2.16 x10 ⁻⁶
3	0.0400	8.64 x 10 ⁻⁶

Practice 0.5

Determine the rate law and calculate the rate constant k using the following experimental data.

Experiment number	Initial B concentration (M)	Observed initial rate (M/s)
1	0.0050	9.3x 10 ⁻³
2	0.0100	3.7 x 10 ⁻²
3	0.0025	2.3 x 10 ⁻³

Practice 1.5

Determine the rate law for the following reaction:

$BrO_3(aq) + 5Br(aq) + 6H(aq) \rightarrow 3Br_2(aq) + 3H_2O(l)$	
---	--

	Initial concentrations		Rate in	
Mixture	[BrO ₃ ⁻] in M	[Br] in M	[H⁺] in M	M per unit time
A	0.0050	0.025	0.030	10
В	0.010	0.025	0.030	20
С	0.010	0.050	0.030	40
D	0.010	0.050	0.060	160

Challenge problem

Using the initial rates method and the experimental data, determine the rate law and the value of the rate constant for this reaction:

$2NO(g) + Cl_2(g) \rightarrow 2$	NOCI(g)	
----------------------------------	---------	--

Trial	[NO] (mol/L)	[Cl ₂] (mol/L)	$-rac{\Delta [ext{NO}]}{\Delta t} (ext{mol} ext{L}^{-1} ext{s}^{-1})$
1	0.10	0.10	0.00300
2	0.10	0.15	0.00450
3	0.15	0.10	0.00675