Rate law example with one reactant
Determine the rate law and calculate the rate constant k using the following experimental data.

Experiment number	Initial A concentration (M)	Observed initial rate (M/s)
1	0.0100	5.4×10^{-7}
2	0.0200	2.16×10^{-6}
3	0.0400	8.64×10^{-6}

Practice 0.5

Determine the rate law and calculate the rate constant k using the following experimental data.

Experiment number	Initial B concentration (M)	Observed initial rate (M/s)
1	0.0050	9.3×10^{-3}
2	0.0100	3.7×10^{-2}
3	0.0025	2.3×10^{-3}

Practice 1.5

Determine the rate law for the following reaction:
$\mathrm{BrO}_{3}^{-}(a q)+5 \mathrm{Br}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow 3 \mathrm{Br}_{2}(a q)+3 \mathrm{H}_{2} \mathrm{O}(/)$

	Initial concentrations			Rate in M per unit time
Mixture	[$\mathrm{BrO}_{3}{ }^{\text {] }}$ in M	[Br$]$ in M	[H^{+}] in M	
A	0.0050	0.025	0.030	10
B	0.010	0.025	0.030	20
C	0.010	0.050	0.030	40
D	0.010	0.050	0.060	160

Challenge problem

Using the initial rates method and the experimental data, determine the rate law and the value of the rate constant for this reaction:

$$
2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{NOCl}(g)
$$

Trial	$[\mathrm{NO}](\mathrm{mol} / \mathrm{L})$	$\left[\mathrm{Cl}_{2}\right](\mathrm{mol} / \mathrm{L})$	$-\frac{\Delta[\mathrm{NO}]}{\Delta t}\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.10	0.10	0.00300
2	0.10	0.15	0.00450
3	0.15	0.10	0.00675

