Unit 5 Review for Midterms

Kinetics

You should be able to:

- Show how the rates of change of reactant and product concentrations are determined by stoichiometry
- Understand the factors that affect the rate of a reaction and why the rate is affected
- Determine a rate law using experimental initial rates and concentration data
- Infer the order of a reaction based on graphs of concentration vs time
- Calculate k of a rate law using graphs
- Perform calculations for zero, first, and second order reactions (equations on equation sheet)
- Understand half-life
- Understand elementary reactions
- Relate collision energy and orientation to reaction rates
- Use Maxwell-Boltzmann distribution curves to compare particle energies and reaction rates
- Represent the activation energy and overall energy change on a diagram/reaction energy profile
- Predict the rate law based on a reaction mechanism
- Use the terms intermediates, catalysts, activation energy accurately
- Represent the activation energy and overall energy change in a multistep reaction with a reaction energy profile
- 1. For the following equation, $C_6H_{12}O_{6(s)} + 6 O_{2(g)} \rightarrow 6 CO_{2(g)} + 6 H_2O_{(g)}$.
 - a. Discuss the relationship between rates of change of each of the species.
 - b. Write a mathematical expression for part a.
- 2. $2N_2O_5 \rightarrow 4NO_2 + O_2$ The rate law is first order in N₂O₅. At 64 degrees, the rate constant is 4.82 x 10⁻³ s⁻¹.
 - a. Write the rate law for the reaction.
 - b. What is the rate of the reaction when $[N_2O_5] = 0.200 \text{ M}$?
 - c. What happens to the rate when the concentration of N_2O_5 is tripled?
- 3. Initial rate data were collected for the following reaction in which iodide ion is oxidized to triiodide by peroxydisulfate ion:

Experiment	[S ₂ O ₈ ²⁻] (M)	[I ⁻] (M)	Initial rate (M/sec)
1	0.080	0.034	2.2x10 ⁻⁴
2	0.080	0.017	1.1×10^{-4}

 $S_2O_8^{2-}_{(aq)} + 3I^-_{(aq)} \rightarrow 2SO_4^{2-}_{(aq)} + I_3^-_{(aq)}$

3	0.160	0.017	2.2x10 ⁻⁴
4	0.280	???	5.7x10 ⁻⁴

- a. Write the rate law for the overall reaction.
- b. Determine the value of the rate constant, *k*, for the reaction. Include units with your answer.
- c. Calculate the initial concentration of I⁻ for experiment 4.
- d. What is the overall order of this reaction?
- e. What does the overall order indicate about the slow step of the reaction mechanism?
- 4. Consider the proposed mechanism for the reaction between nitrogen monoxide and hydrogen gas. Assume the mechanism is correct.
 - Step 1: $2NO \rightarrow N_2O_2$
 - Step 2: $N_2O_2 + H_2 \rightarrow N_2O + H_2O$
 - Step 3: $N_2O + H_2 \rightarrow N_2 + H_2O$
 - a. Use the steps in the mechanism to determine the overall balanced equation for the reaction. Clearly show your method
 - b. If step 2 is the rate-determining step, write the rate law for the reaction, explain your answer.
 - c. If the first step is the rate-determining step, what is the order of reaction with respect to each reactant?
- 5. The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00×10^3 cm⁻¹ M⁻¹ and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below.

[X] (M)	Absorbance	Time (min)
?	0.600	0.0
4.0 × 10 ⁻⁵	0.200	35.00
3.0 × 10 ⁻⁵	0.150	44.2
1.50 × 10 ⁻⁵	0.075	?

- a. Calculate the initial concentration of the colored species.
- b. Calculate the rate constant for the first-order reaction using the values given for concentration and time. Include units with your answer.
- c. Calculate the number of minutes it takes for the absorbance to drop from 0.600 to 0.075.
- d. Calculate the half-life of the reaction. Include units with your answer.
- 6. Answer the following questions regarding the kinetics of chemical reactions.
 - a. The diagram below shows the energy pathway for the reaction: $O_3 + NO \rightarrow NO_2 + O_2$. Clearly label the following directly on the diagram:
 - i. The activation energy (E_a) for the forward reaction
 - ii. The enthalpy change (ΔH) for the reaction

- b. Use the information in the graphs below to answer the following regarding $A \rightarrow B$.
 - i. Write the rate-law expression for the reaction. Justify your answer.

ii. Describe how to determine the value of the rate constant for the reaction.

- 7. A reaction has a constant half-life. What does this tell you about the order of the reaction?
- 8. At elevated temperatures, nitrogen dioxide decomposes to nitrogen oxide and oxygen:

 $NO_2(g) \rightarrow NO(g) + \frac{1}{2}O_2(g)$

The reaction is second order in NO₂ with a rate constant of 0.543 $M^{-1}s^{-1}$ at 300°C. If the initial [NO₂] is 1.260 M, how long will it take for the concentration to drop to 0.500 M?

9. The reaction below is first order in $[H_2O_2]$:

 $2 \text{ H}_2\text{O}_2 \rightarrow 2 \text{ H}_2\text{O} + \text{O}_2$

A solution originally at 0.800 M H_2O_2 is found to be 0.175 M after 54 min. What is the half-life of this reaction?

10. Based on the below two-step mechanism, write the overall equation and predict the rate for the reaction. Note that an intermediate CANNOT be in the rate law. Substitute.

 $\begin{array}{ll} \mathsf{NO} + \mathsf{Br}_2 \leftrightarrow \mathsf{NOBr}_2 & (\mathsf{fast equilibrium}) \\ \mathsf{NOBr}_2 + \mathsf{NO} \rightarrow 2 \ \mathsf{NOBr} & (\mathsf{slow}) \end{array}$

- 11. For the following reaction,
 - a. Write the overall equation
 - b. Identify any intermediatesc. Identify any catalysts
 - Step 1: NO (g) + O₃ $(g) \rightarrow$ NO₂ (g) + O₂ (g)

Step 2: NO₂ (g) + O (g) \rightarrow NO (g) + O₂ (g)