Unit 6 Review for Midterms

Thermodynamics

You should be able to:

- Understand and explain exothermic and endothermic processes
- Explain how the strength of intermolecular forces determines if forming a solution is endo- or exothermic
- Describe an endo- or exothermic process with an energy diagram
- Explain the relationship between collisions and thermal energy transfer
- Define thermal equilibrium
- Perform calorimetry calculations for a one-species system and two-species system
- Use the positive or negative signs for heat accurately
- Explain changes in heat absorbed or released by a system undergoing phase changes
- Use the terms vaporization, fusion, condensation, solidification correctly
- Understand the relationship between heat energy and enthalpy
- Calculate the enthalpy change of a reaction based on bond energies
- Calculate enthalpy change of a reaction based on the standard enthalpies of formation
- Use Hess's law
- Manipulate equations and enthalpies
- 1. Upon adding solid potassium hydroxide pellets to water, the following reaction takes place: $KOH(s) \rightarrow K^+ + OH^- + 43 \text{ kJ/mol}$

Answer the following questions regarding the addition of 14.0 g of KOH to water:

- a. Does the beaker get warmer or colder?
- b. Is the reaction endothermic or exothermic?
- c. What is the enthalpy change for the dissolution of the 14.0 g of KOH?
- 2. When 1.00 L of 1.00 M Ba(NO₃)₂ solution at 25.0°C is mixed with 1.00 L of 1.00 M Na₂SO₄ solution at 25.0°C in a calorimeter, the white solid BaSO₄ forms and the temperature of the mixture increase to 28.1°C.
 - a. Write the balanced equation for this reaction.
 - b. Write the net-ionic equation.
 - c. Assuming that the calorimeter absorbs only a negligible quantity of heat, and that the specific heat capacity of the solution is 4.18 J/g°C, and that the density of the final solution is 1.00 g/mL, calculate the enthalpy change per mole of BaSO₄ formed.
- 3. When 1 mole of methane (CH₄) is burned, 890 kJ/mol of energy is released as heat.
 - a. Write the balanced thermochemical equation for this reaction.
 - b. Calculate ΔH for a process in which a 5.8 gram sample of methane is burned.
- 4. Calculate the total energy needed to turn 89.70 grams of ice at -40.00 °C into steam at 350.0 °C. $(\Delta H_{fus} = 6.01 \text{ kJ/mol}, C_{liquid} = 4.184 \text{ J/g}^{\circ}C, \Delta H_{vap} = 40.7 \text{ kJ/mol}, C_{gas} = 2.02 \text{ J/g}^{\circ}C, C_{ice} = 2.11 \text{ J/g}^{\circ}C)$
- 5. Given the information below, calculate the ΔH°_{rxn} for the following reaction:

 $3 \operatorname{Al}(s) + 3 \operatorname{NH}_4\operatorname{ClO}_4(s) \rightarrow \operatorname{Al}_2\operatorname{O}_3(s) + \operatorname{AlCl}_3(s) + 3 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(g)$

Substance	ΔH_{f}° (kJ/mol)
$NH_4ClO_4(s)$	-295
$Al_2O_3(s)$	-1676
$AlCl_3(s)$	-704
NO(g)	90.0
$H_2O(g)$	-242

6. Calculate the H for this overall reaction 2 H₃BO₃(*aq*) \rightarrow B₂O₃(*s*) + 3 H₂O(ℓ) given the following equations:

$H_3BO_3(aq) \rightarrow HBO_2(aq) + H_2O(\ell)$	$\Delta H = -0.02 \text{ kJ/mol}_{rxm}$
$H_2B_4O_7(aq) + H_2O(\ell) \rightarrow 4 HBO_2(aq)$	$\Delta H = -11.3 \text{ kJ/mol}_{rxn}$
$H_2B_4O_7(aq) \rightarrow 2 B_2O_3(s) + H_2O(\ell)$	$\Delta H = 17.5 \text{ kJ/mol}_{rxn}$

7. For the following reaction and data given below:

$$H_2(g) + F_2(g) \rightarrow 2 HF(g)$$

Bond Type	Bond Energy
H-H	432 kJ/mol
F-F	154 kJ/mol
H-F	565 kJ/mol

- a. Draw dot structures for all reactants and products.
- b. Use the bond energies to calculate the enthalpy of the reaction.

8.

AP Questions

1.

$O_3(g) + NO(g) \rightarrow O_2(g) + NO_2(g)$

Consider the reaction represented above.

(a) Referring to the data in the table below, calculate the standard enthalpy change, ΔH° , for the reaction at 25°C. Be sure to show your work.

	$O_3(g)$	NO(g)	$NO_2(g)$
Standard enthalpy of formation, ΔH_f° , at 25°C	143	90.	33
(kJ mol ⁻¹)			

Experiment Number	Initial [O ₃] (mol L ⁻¹)	Initial [NO] (mol L ⁻¹)	Initial Rate of Formation of NO_2 (mol L ⁻¹ s ⁻¹)
1	0.0010	0.0010	X
2	0.0010	0.0020	2 <i>x</i>
3	0.0020	0.0010	2x
4	0.0020	0.0020	4x

(d) Use the information in the table below to write the rate-law expression for the reaction, and explain how you obtained your answer.

(e) The following three-step mechanism is proposed for the reaction. Identify the step that must be the slowest in order for this mechanism to be consistent with the rate-law expression derived in part (d). Explain.

Step I:	$O_3 + NO \rightarrow O + NO_3$
Step II:	$O + O_3 \rightarrow 2 O_2$
Step III:	$NO_3 + NO \rightarrow 2 NO_2$

2.

Answer the following questions that relate to the chemistry of nitrogen.

(a) Two nitrogen atoms combine to form a nitrogen molecule, as represented by the following equation. $2 N(g) \rightarrow N_2(g)$

Using the table of average bond energies below, determine the enthalpy change, ΔH , for the reaction.

Bond	Average Bond Energy (kJ mol ⁻¹)
N - N	160
N = N	420
$\mathbf{N} \equiv \mathbf{N}$	950

(b) The reaction between nitrogen and hydrogen to form ammonia is represented below.

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g) \qquad \Delta H^\circ = -92.2 \text{ kJ}$

(d) When N₂(g) and H₂(g) are placed in a sealed container at a low temperature, no measurable amount of NH₃(g) is produced. Explain.

$$2 \operatorname{Fe}(s) + \frac{3}{2} \operatorname{O}_2(g) \to \operatorname{Fe}_2 \operatorname{O}_3(s) \quad \Delta H^{\circ}_f = -824 \text{ kJ mol}^{-1}$$

Iron reacts with oxygen to produce iron(III) oxide, as represented by the equation above. A 75.0 g sample of Fe(s) is mixed with 11.5 L of $O_2(g)$ at 2.66 atm and 298 K.

(a) Calculate the number of moles of each of the following before the reaction begins.

(i) Fe(s) (ii) O₂(g)

- (b) Identify the limiting reactant when the mixture is heated to produce Fe₂O₃(s). Support your answer with calculations.
- (c) Calculate the number of moles of $Fe_2O_3(s)$ produced when the reaction proceeds to completion.

The reaction represented below also produces iron(III) oxide. The value of ΔH° for the reaction is -280. kJ per mole of Fe₂O₃(s) formed.

$$2 \operatorname{FeO}(s) + \frac{3}{2} \operatorname{O}_2(g) \to \operatorname{Fe_2O_3}(s)$$

Calculate the standard enthalpy of formation, , ΔH°_{f} , of FeO(s).