Unit 6 Review for Midterms

Thermodynamics

You should be able to:

- Understand and explain exothermic and endothermic processes
- Explain how the strength of intermolecular forces determines if forming a solution is endo- or exothermic
- Describe an endo- or exothermic process with an energy diagram
- Explain the relationship between collisions and thermal energy transfer
- Define thermal equilibrium
- Perform calorimetry calculations for a one-species system and two-species system
- Use the positive or negative signs for heat accurately
- Explain changes in heat absorbed or released by a system undergoing phase changes
- Use the terms vaporization, fusion, condensation, solidification correctly
- Understand the relationship between heat energy and enthalpy
- Calculate the enthalpy change of a reaction based on bond energies
- Calculate enthalpy change of a reaction based on the standard enthalpies of formation
- Use Hess's law
- Manipulate equations and enthalpies

1. Upon adding solid potassium hydroxide pellets to water, the following reaction takes place:

$$
\mathrm{KOH}(\mathrm{~s}) \rightarrow \mathrm{K}^{+}+\mathrm{OH}^{-}+43 \mathrm{~kJ} / \mathrm{mol}
$$

Answer the following questions regarding the addition of 14.0 g of KOH to water:
a. Does the beaker get warmer or colder?
b. Is the reaction endothermic or exothermic?
c. What is the enthalpy change for the dissolution of the 14.0 g of KOH ?
2. When 1.00 L of $1.00 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution at $25.0^{\circ} \mathrm{C}$ is mixed with 1.00 L of $1.00 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{SO}_{4}$ solution at $25.0^{\circ} \mathrm{C}$ in a calorimeter, the white solid BaSO_{4} forms and the temperature of the mixture increase to $28.1^{\circ} \mathrm{C}$.
a. Write the balanced equation for this reaction.
b. Write the net-ionic equation.
c. Assuming that the calorimeter absorbs only a negligible quantity of heat, and that the specific heat capacity of the solution is $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, and that the density of the final solution is $1.00 \mathrm{~g} / \mathrm{mL}$, calculate the enthalpy change per mole of BaSO_{4} formed.
3. When 1 mole of methane $\left(\mathrm{CH}_{4}\right)$ is burned, $890 \mathrm{~kJ} / \mathrm{mol}$ of energy is released as heat.
a. Write the balanced thermochemical equation for this reaction.
b. Calculate ΔH for a process in which a 5.8 gram sample of methane is burned.
4. Calculate the total energy needed to turn 89.70 grams of ice at $-40.00^{\circ} \mathrm{C}$ into steam at $350.0^{\circ} \mathrm{C}$. $\left(\Delta \mathrm{H}_{\text {fus }}=6.01 \mathrm{~kJ} / \mathrm{mol}, \mathrm{C}_{\text {liquid }}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \Delta \mathrm{H}_{\text {vap }}=40.7 \mathrm{~kJ} / \mathrm{mol}, \mathrm{C}_{\text {gas }}=2.02 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}, \mathrm{C}_{\text {ice }}=2.11 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)$
5. Given the information below, calculate the $\Delta \mathrm{H}^{\circ}{ }_{r \times n}$ for the following reaction:

$$
3 \mathrm{Al}(\mathrm{~s})+3 \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{AlCl}_{3}(\mathrm{~s})+3 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Substance	$\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$	-295
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1676
$\mathrm{AlCl}_{3}(s)$	-704
$\mathrm{NO}(\mathrm{g})$	90.0
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-242

6. Calculate the H for this overall reaction $2 \mathrm{H}_{3} \mathrm{BO}_{3}(a q) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(s)+3 \mathrm{H}_{2} \mathrm{O}(\ell)$ given the following equations:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{BO}_{3}(a q) \rightarrow \mathrm{HBO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) \\
& \mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}(a q)+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 4 \mathrm{HBO}_{2}(a q) \\
& \mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}(a q) \rightarrow 2 \mathrm{~B}_{2} \mathrm{O}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H=-0.02 \mathrm{~kJ} / \mathrm{mol}_{r a n} \\
& \Delta H=-11.3 \mathrm{~kJ} / \mathrm{mol}_{r x n} \\
& \Delta H=17.5 \mathrm{~kJ} / \mathrm{mol}_{r x n}
\end{aligned}
$$

7. For the following reaction and data given below:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{~g})
$$

Bond Type		Bond Energy
$\mathrm{H}-\mathrm{H}$		$432 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{F}-\mathrm{F}$		
$\mathrm{H}-\mathrm{F}$		
		$565 \mathrm{~kJ} / \mathrm{mol}$

a. Draw dot structures for all reactants and products.
b. Use the bond energies to calculate the enthalpy of the reaction.
8.

AP Questions

1.

$$
\mathrm{O}_{3}(g)+\mathrm{NO}(g) \rightarrow \mathrm{O}_{2}(g)+\mathrm{NO}_{2}(g)
$$

Consider the reaction represented above.
(a) Referring to the data in the table below, calculate the standard enthalpy change, ΔH°, for the reaction at $25^{\circ} \mathrm{C}$. Be sure to show your work.

	$\mathrm{O}_{3}(g)$	$\mathrm{NO}(g)$	$\mathrm{NO}_{2}(g)$
Standard enthalpy of formation, ΔH_{f}°, at $25^{\circ} \mathrm{C}$ $(\mathrm{kJ} \mathrm{mol}$	143	90.	33

(d) Use the information in the table below to write the rate-law expression for the reaction, and explain how you obtained your answer.

Experiment Number	Initial $\left[\mathrm{O}_{3}\right]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial $[\mathrm{NO}]$ $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Initial Rate of Formation of NO_{2} $\left(\mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}\right)$
1	0.0010	0.0010	x
2	0.0010	0.0020	$2 x$
3	0.0020	0.0010	$2 x$
4	0.0020	0.0020	$4 x$

(e) The following three-step mechanism is proposed for the reaction. Identify the step that must be the slowest in order for this mechanism to be consistent with the rate-law expression derived in part (d). Explain.

$$
\begin{aligned}
\text { Step I: } & \mathrm{O}_{3}+\mathrm{NO} & \rightarrow \mathrm{O}+\mathrm{NO}_{3} \\
\text { Step II: } & \mathrm{O}+\mathrm{O}_{3} & \rightarrow 2 \mathrm{O}_{2} \\
\text { Step III: } & \mathrm{NO}_{3}+\mathrm{NO} & \rightarrow 2 \mathrm{NO}_{2}
\end{aligned}
$$

2.

Answer the following questions that relate to the chemistry of nitrogen.
(a) Two nitrogen atoms combine to form a nitrogen molecule, as represented by the following equation.

$$
2 \mathrm{~N}(g) \rightarrow \mathrm{N}_{2}(g)
$$

Using the table of average bond energies below, determine the enthalpy change, ΔH, for the reaction.

Bond	Average Bond Energy (kJ mol ${ }^{-1}$)
$\mathbf{N}-\mathbf{N}$	$\mathbf{1 6 0}$
$\mathbf{N}=\mathbf{N}$	$\mathbf{4 2 0}$
$\mathbf{N} \equiv \mathbf{N}$	$\mathbf{9 5 0}$

(b) The reaction between nitrogen and hydrogen to form ammonia is represented below.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g) \quad \Delta H^{\circ}=-92.2 \mathrm{~kJ}
$$

(d) When $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ are placed in a sealed container at a low temperature, no measurable amount of $\mathrm{NH}_{3}(\mathrm{~g})$ is produced. Explain.

$$
2 \mathrm{Fe}(\mathrm{~s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad \Delta H_{f}^{\circ}=-824 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Iron reacts with oxygen to produce iron(III) oxide, as represented by the equation above. A 75.0 g sample of $\mathrm{Fe}(s)$ is mixed with 11.5 L of $\mathrm{O}_{2}(\mathrm{~g})$ at 2.66 atm and 298 K .
(a) Calculate the number of moles of each of the following before the reaction begins.
(i) $\mathrm{Fe}(s)$
(ii) $\mathrm{O}_{2}(g)$
(b) Identify the limiting reactant when the mixture is heated to produce $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$. Support your answer with calculations.
(c) Calculate the number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$ produced when the reaction proceeds to completion.

The reaction represented below also produces iron(III) oxide. The value of ΔH° for the reaction is $-280 . \mathrm{kJ}$ per mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$ formed.

$$
2 \mathrm{FeO}(s)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

Calculate the standard enthalpy of formation, ΔH_{f}°, of $\mathrm{FeO}(\mathrm{s})$.

