Waves: Sound and Light

Ch 16, 17, 18

Objectives

- Understand the properties of transverse and longitudinal waves
- Perform calculations for waves

Mechanical waves

- Need a medium
- Transverse
- Longitudinal

Transverse waves

Particles vibrate perpendicular to direction of wave

Longitudinal waves

Particles vibrate in direction of wave

Sound

Ocean waves

Transverse or longitudinal?

Vocab

- Speed
- Amplitude
- Wavelength
- Frequency
- Period

Wave equations

$$f = \frac{1}{T}$$

$$\lambda = \frac{\mathbf{v}}{\mathbf{f}}$$

- f = frequency
 - Measured in Hertz (1/s)
- T = period (s)
- λ = wavelength
- v = velocity

Nodes and Antinodes

- Node—point at which medium is undisturbed
 - Displacement is zero
- Antinode—displacement is greatest

Nodes and Antinodes

- Standing wave—appears to be standing still
- Nodes and antinodes in standing wave

Figure 14-14 Interference produces standing waves in a rope. As the frequency is increased, as shown from top to bottom, the number of nodes and antinodes increases.

Sound waves—pressure

Sound waves—longitudinal

Sound waves—longitudinal

Sound is a Pressure Wave

NOTE: "C" stands for compression and "R" stands for rarefaction

- Bottom wave only represents fluctuations
- Sound is NOT a transverse wave!

Doppler Effect

$$f_{o} = f_{s} \left(\frac{v \pm v_{o}}{v \mp v_{s}} \right)$$

- Siren clip
- Hand out
- CharlielsSoCoolLike

Doppler Effect

Law of superposition

Wave Terms

- Transverse wave
- Longitudinal wave
- Wavelength
- Frequency
- Period
- Amplitude
- Trough

- Crest
- Standing wave
- Interference
- Node
- Antinode
- Doppler Effect

Periodic Motion

- Repeating regular cycle (springs, pendulums)
- Hooke's Law for spring: F = k x
- Pendulum:

$$T = 2\pi \sqrt{\frac{1}{g}}$$

• Rearrange pendulum equation for length and gravity: $\sqrt{1}$

$$T = 2\pi \sqrt{\frac{1}{g}}$$