AP Worksheet 4e (ACID-BASE and REDOX)

- 1. Identify the acid, base, conjugate acid, and conjugate base in:
 - a. $HNO_3(aq) + H_2O(I) \leftrightarrow NO_3(aq) + H_3O(aq)$
 - b. $CH_3COO^{-}(aq) + H_3O^{+}(aq) \leftrightarrow CH_3COOH(aq) + H_2O(I)$
 - c. $CH_3COOH(aq) + HS^{-}(aq) \leftrightarrow CH_3COO^{-}(aq) + H_2S(g)$
- 2. Give the conjugate base of the following acids:
 - a. HCOOH
 - b. HPO4²⁻
- 3. Give the conjugate acid of the following bases:
 - a. SO4²⁻
 - $b. \quad CH_3NH_2$
- 4. Calculate the concentration (molarity) of the ion indicated in each of the following solutions. The use of square brackets, [], denotes concentration in mol L⁻¹.
 - a. [K⁺] in 0.238 M KNO₃
 - b. $[Al^{3+}]$ and $[SO_4^{2-}]$ in 0.080 M Al₂(SO₄)₃
- 5. What is the oxidation number of each of the underline atoms in each of the following species? Think carefully about the rules that are being applied and write a brief, simple explanation of your answer in each case.
 - a. $\underline{Ca}I_2$
 - b. <u>Ge</u>O₂
 - c. K<u>O</u>₂
 - d. <u>N</u>H₃
- 6. For each of the following reactions write two separate half-reactions, one showing the oxidation and one showing the reduction. Then use the half-reactions to write the balanced full REDOX equation.
 - a. Na + Cl₂ \rightarrow NaCl
 - b. Mg + O₂ \rightarrow MgO
 - c. $BrO^{-} \rightarrow BrO_{3}^{-} + Br^{-}$
 - d. $Zn + FeSO_4 \rightarrow ZnSO_4 + Fe$
- 7. Complete and balance this equation by the method of half-reactions. The reaction takes place in acidic solution.

$$I_2(s) + OCl^{-}(aq) \rightarrow IO_3^{-}(aq) + Cl^{-}(aq)$$

 A 0.347 g sample of the hydrated "double salt", ammonium iron(II) sulfate hexahydrate, FeSO₄(NH₄)₂SO₄•6H₂O, was dissolved in water. The solution had some acid added to it and then it reacted completely with 12.6 mL of potassium permanganate, KMnO₄, solution. Calculate [KMnO₄] given the full REDOX equation below.

 $5Fe^{2+} + MnO_{4^-} + 8H^+ \rightarrow 5Fe^{3+} + Mn^{2+} + 4H_2O$