AP Worksheet 4e (ACID-BASE and REDOX)

1. Identify the acid, base, conjugate acid, and conjugate base in:
a. $\mathrm{HNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \leftrightarrow \mathrm{NO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
b. $\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{H}_{2} \mathrm{O}(/)$
c. $\mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{HS}^{-}(a q) \leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{~S}(g)$
2. Give the conjugate base of the following acids:
a. HCOOH
b. $\mathrm{HPO}_{4}{ }^{2-}$
3. Give the conjugate acid of the following bases:
a. $\mathrm{SO}_{4}{ }^{2-}$
b. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
4. Calculate the concentration (molarity) of the ion indicated in each of the following solutions. The use of square brackets, [], denotes concentration in $\mathrm{mol} \mathrm{L}^{-1}$.
a. $\quad\left[\mathrm{K}^{+}\right]$in $0.238 \mathrm{M} \mathrm{KNO}_{3}$
b. $\left[\mathrm{Al}^{3+}\right]$ and $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ in $0.080 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
5. What is the oxidation number of each of the underline atoms in each of the following species? Think carefully about the rules that are being applied and write a brief, simple explanation of your answer in each case.
a. Cal_{2}
b. GeO_{2}
c. KO_{2}
d. NH_{3}
6. For each of the following reactions write two separate half-reactions, one showing the oxidation and one showing the reduction. Then use the half-reactions to write the balanced full REDOX equation.
a. $\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}$
b. $\mathrm{Mg}+\mathrm{O}_{2} \rightarrow \mathrm{MgO}$
c. $\mathrm{BrO}^{-} \rightarrow \mathrm{BrO}_{3}{ }^{-}+\mathrm{Br}^{-}$
d. $\mathrm{Zn}+\mathrm{FeSO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{Fe}$
7. Complete and balance this equation by the method of half-reactions. The reaction takes place in acidic solution.

$$
\mathrm{I}_{2}(s)+\mathrm{OCl}^{-}(a q) \rightarrow \mathrm{IO}_{3}-(a q)+\mathrm{Cl}-(a q)
$$

8. A 0.347 g sample of the hydrated "double salt", ammonium iron(II) sulfate hexahydrate, $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \bullet 6 \mathrm{H}_{2} \mathrm{O}$, was dissolved in water. The solution had some acid added to it and then it reacted completely with 12.6 mL of potassium permanganate, KMnO_{4}, solution. Calculate $\left[\mathrm{KMnO}_{4}\right]$ given the full REDOX equation below.

$$
5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

