AP Worksheet 7a (Equilibrium, K, Q)

Part 1 - Kc, Kp, Q

1. Balance the equation and write the equilibrium constant expression, K_{c}, for each of the following reactions. All reactants and products are gases.
a. $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightleftharpoons \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
b. $\mathrm{COCl}_{2} \rightleftharpoons \mathrm{CO}+\mathrm{Cl}_{2}$
c. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO} \rightleftharpoons \mathrm{H}_{2}+\mathrm{CO}_{2}$
d. $\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{NO}_{2}$
2. If K_{c} for $2 \mathrm{~A}+\mathrm{B} \rightleftharpoons 2 \mathrm{C}$ is 8.0 , set up the expression used to calculate the concentration of C at equilibrium. Calculate the equilibrium concentration of C if the equilibrium conditions were 0.50 mol each of A and B in a 10.0 L container.
(0.032 M)
3. At $2000^{\circ} \mathrm{C}$, nitrogen and oxygen react according to the following equation.

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}
$$

The equilibrium constant for this reaction at $2000^{\circ} \mathrm{C}$ is 1.2×10^{-4}. At equilbrium, the concentrations of N_{2} and O_{2} are found to be 0.166 M and 0.145 M , respectively. What is the concentration of NO?
$\left(1.7 \times 10^{-3} \mathrm{M}\right.$)
4. Ammonia combines with oxygen to produce water vapor and nitrogen.
a. Write a balanced equation for the equilibrium reaction.
b. Write the expression for the equilibrium constant.
c. At a certain temperature, the concentration of each substance is 1.0 M . Calculate K_{c} for that temperature.
d. Calculate K_{c} if $\left[\mathrm{NH}_{3}\right]$ is $3.0 \mathrm{M},\left[\mathrm{O}_{2}\right]$ is $2.0 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]$ is 4.0 M , and $\left[\mathrm{N}_{2}\right]$ is 2.0 M . (25)

Part 2 - Interpreting K and Q
5. For the reaction $2 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=7.7 \times 10^{-15}$. At a particular time, the following concentrations are measured: $[\mathrm{CO}]=0.034 \mathrm{M},\left[\mathrm{CO}_{2}\right]=3.6 \times 10^{-17} \mathrm{M}$. Is this reaction at equilibrium? If not which direction will the reaction proceed?
6. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.2$. At a particular time, the following concentrations are measured: $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=2.0 \mathrm{M},\left[\mathrm{NO}_{2}\right]=0.2 \mathrm{M}$. Is this reaction at equilibrium? If not which direction will the reaction proceed?
7. At $340^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=0.064$ for the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ Given that $\left[\mathrm{H}_{2}\right]=$ 0.45 M and $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.37 \mathrm{M}$, find Q and predict how the reaction will proceed.

Extra problems (optional)

8. Determine the equilibrium constant of the following reaction using the data given.

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

At equilibrium at $295^{\circ} \mathrm{C}$, a 2.00 L flask was found to contain 0.35 mole of $\mathrm{SO}_{2}, 0.70$ mole of O_{2}, and 1.40 moles SO_{3}.
(46)
9. The equilibrium constant for the reaction below, at a given temperature, is 45.6 . If the equilibrium concentrations of F_{2} and BrF_{3} are 0.124 M and 0.199 M respectively, calculate the equilibrium concentration of Br_{2}.
(0.455 M)

$$
\mathrm{Br}_{2}(g)+3 \mathrm{~F}_{2}(g) \rightleftharpoons 2 \mathrm{BrF}_{3}(g)
$$

10. An equilibrium is established in the reaction below and the concentrations of each component are determined. Calculate the value of K_{c} at this temperature $\quad\left(2.52 \times 10^{5}\right)$

$$
2 \mathrm{~N}_{2} \mathrm{O}(g)+3 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{~N}_{2} \mathrm{O}_{4}(g)
$$

Equilibrium concentrations, $\mathrm{N}_{2} \mathrm{O}=0.0155 \mathrm{M}, \mathrm{O}_{2}=0.0169 \mathrm{M}, \mathrm{N}_{2} \mathrm{O}_{4}=0.0171 \mathrm{M}$
11. For the reaction $2 \mathrm{ICl}(\mathrm{g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.11$. At a particular time, the following concentrations are measured: $[\mathrm{ICI}]=2.5 \mathrm{M},\left[\mathrm{I}_{2}\right]=2.0 \mathrm{M},\left[\mathrm{Cl}_{2}\right]=1.2 \mathrm{M}$. Is this reaction at equilibrium? If not which direction will the reaction proceed?

