AP Worksheet 7a (Equilibrium, K, Q)

Part 1 – Kc, Kp, Q

- 1. Balance the equation and write the equilibrium constant expression, K_c, for each of the following reactions. All reactants and products are gases.
 - a. $NH_3 + O_2 \rightleftharpoons NO + H_2O$
 - b. $COCl_2 \rightleftharpoons CO + Cl_2$
 - c. $H_2O + CO \rightleftharpoons H_2 + CO_2$
 - d. $N_2O_4 \rightleftharpoons NO_2$
- If K_c for 2A + B → 2C is 8.0, set up the expression used to calculate the concentration of C at equilibrium. Calculate the equilibrium concentration of C if the equilibrium conditions were 0.50 mol each of A and B in a 10.0 L container. (0.032 M)
- 3. At 2000 °C, nitrogen and oxygen react according to the following equation.

$$N_2 + O_2 \rightleftharpoons 2NO$$

The equilibrium constant for this reaction at 2000 $^{\circ}$ C is 1.2 x 10⁻⁴. At equilbrium, the concentrations of N₂ and O₂ are found to be 0.166 M and 0.145 M, respectively. What is the concentration of NO? (1.7x10⁻³ M)

- 4. Ammonia combines with oxygen to produce water vapor and nitrogen.
 - a. Write a balanced equation for the equilibrium reaction.
 - b. Write the expression for the equilibrium constant.
 - c. At a certain temperature, the concentration of each substance is 1.0 M. Calculate K_c for that temperature. (1.0)
 - d. Calculate K_c if $[NH_3]$ is 3.0 M, $[O_2]$ is 2.0 M, $[H_2O]$ is 4.0 M, and $[N_2]$ is 2.0 M. (25)

Part 2 – Interpreting K and Q

5. For the reaction $2CO(g) \rightleftharpoons C(s) + CO_2(g)$, $K_c = 7.7 \times 10^{-15}$. At a particular time, the following concentrations are measured: [CO] = 0.034 M, [CO₂] = 3.6x10⁻¹⁷ M. Is this reaction at equilibrium? If not which direction will the reaction proceed?

- 6. For the reaction N₂O₄(g) → 2NO₂(g), K_c = 0.2. At a particular time, the following concentrations are measured: [N₂O₄] = 2.0 M, [NO₂] = 0.2 M. Is this reaction at equilibrium? If not which direction will the reaction proceed?
- 7. At 340 °C, $K_c = 0.064$ for the reaction $Fe_2O_3(s) + 3H_2(g) \rightleftharpoons 2Fe(s) + 3H_2O(g)$ Given that $[H_2] = 0.45$ M and $[H_2O] = 0.37$ M, find Q and predict how the reaction will proceed.

Extra problems (optional)

8. Determine the equilibrium constant of the following reaction using the data given.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

At equilibrium at 295°C, a 2.00 L flask was found to contain 0.35 mole of SO₂, 0.70 mole of O₂, and 1.40 moles SO₃. (46)

9. The equilibrium constant for the reaction below, at a given temperature, is 45.6. If the equilibrium concentrations of F_2 and BrF_3 are 0.124 M and 0.199 M respectively, calculate the equilibrium concentration of Br_2 . (0.455 M)

$$Br_2(g) + 3F_2(g) \rightleftharpoons 2BrF_3(g)$$

10. An equilibrium is established in the reaction below and the concentrations of each component are determined. Calculate the value of K_c at this temperature (2.52x10⁵)

$$2N_2O(g) + 3O_2(g) \rightleftharpoons 2N_2O_4(g)$$

Equilibrium concentrations, $N_2O = 0.0155$ M, $O_2 = 0.0169$ M, $N_2O_4 = 0.0171$ M

11. For the reaction 2 $ICl(g) \rightleftharpoons I_2(g) + Cl_2(g)$, $K_c = 0.11$. At a particular time, the following concentrations are measured: [ICI]=2.5 M, $[I_2]=2.0 \text{ M}$, $[Cl_2]=1.2 \text{ M}$. Is this reaction at equilibrium? If not which direction will the reaction proceed?