AP Worksheet 7b (Manipulating and Calculating K)

Part 3 - Manipulating K

1. The equilibrium constant, K_{c}, for the reaction: $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ is 2.4×10^{-7}. What is the equilibrium constant, K_{c}, for the reaction: $1 / 3 \mathrm{Cl}_{2}(\mathrm{~g})+2 / 3 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 / 3 \mathrm{NOCl}(\mathrm{g}) \quad\left(1.6 \times 10^{2}\right)$
2. If $K=0.145$ for $A_{2}+2 B \rightleftharpoons 2 A B$, what would K equal for $A B \rightleftharpoons B+1 / 2 A_{2}$?
3. Given the following equilibrium equations and their corresponding equilibrium constants:

$$
\begin{array}{ll}
2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CH}_{2} \mathrm{CO}(\mathrm{~g}) & \mathrm{Kc}=6.1 \times 10^{8} \\
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \mathrm{Kc}=1.2 \times 10^{14}
\end{array}
$$

Find K_{c} for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{2} \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\left(7.3 \times 10^{22}\right)$

Part 4 - Solving equilibrium problems

4. Calculate the equilibrium amounts of each substance in the reaction below if an initial amount of 0.100 moles of H_{2} are brought together with an initial amount of 0.200 moles of I_{2} and then equilibrium is established at $300 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$ at this temperature is 70 .

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}
$$

5. Determine the equilibrium amounts of each substance in the reaction below if an initial amount of 0.400 moles of CO are brought together with an initial amount of 2.20 moles of Cl_{2} in a 1.00 L vessel and then equilibrium is established at $900 \mathrm{~K} . \mathrm{K}_{\mathrm{c}}$ at this temperature is 0.800 .

$$
\mathrm{COCl}_{2}(g) \rightleftharpoons \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)
$$

6. A mixture of 9.22 moles of $A, 10.11$ moles of B, and 27.83 moles of C is placed in a one-liter container at a certain temperature. The reaction is allowed to reach equilibrium. At equilibrium the number of moles of B is 18.32 . Calculate the equilibrium constant for the reaction: $A(g)+2 B(g) \rightleftharpoons$ 3 C(g)
7. At a certain temperature, K_{c} is 4.13×10^{-2} for the equilibrium: $2 \operatorname{IBr}(\mathrm{~g}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})$ Assume that equilibrium is established at the above temperature by adding only $\operatorname{lBr}(\mathrm{g})$ to the reaction flask.
a. What are the concentrations of $\mathrm{I}_{2}(\mathrm{~g})$ and $\mathrm{Br}_{2}(\mathrm{~g})$ in equilibrium with 0.0124 moles/liter of $\operatorname{lBr}(\mathrm{g})$?
$\left(2.52 \times 10^{-3} \mathrm{M}\right)$
b. What was the initial concentration of IBr before equilibrium was established
(0.0174 M)

$$
2 \mathrm{HI}(g) \rightleftharpoons \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g)
$$

After a 1.0 mole sample of $\mathrm{HI}(g)$ is placed into an evacuated 1.0 L container at 700 K , the reaction represented above occurs. The concentration of $\mathrm{HI}(g)$ as a function of time is shown below.
(a) Write the expression for the equilibrium constant, K_{c}, for the reaction.

(b) What is [HI] at equilibrium?
(c) Determine the equilibrium concentrations of $\mathrm{H}_{2}(g)$ and $\mathrm{I}_{2}(g)$.
(d) On the graph above, make a sketch that shows how the concentration of $\mathrm{H}_{2}(\mathrm{~g})$ changes as a function of time.
(e) Calculate the value of the following equilibrium constants at $700 . \mathrm{K}$.
(i) K_{c}
(ii) K_{p}
(f) At $1,000 \mathrm{~K}$, the value of K_{c} for the reaction is 2.6×10^{-2}. In an experiment, 0.75 mole of $\mathrm{HI}(\mathrm{g}), 0.10$ mole of $\mathrm{H}_{2}(\mathrm{~g})$, and 0.50 mole of $\mathrm{I}_{2}(\mathrm{~g})$ are placed in a 1.0 L container and allowed to reach equilibrium at 1,000 K. Determine whether the equilibrium concentration of $\mathrm{HI}(g)$ will be greater than, equal to, or less than the initial concentration of $\mathrm{HI}(g)$. Justify your answer.

