AP Worksheet 7d (Solubility and K_{sp})

- Write balanced net ionic equations for the reactions that occur when the following solutions are mixed. If no precipitation occurs, write "no reaction." (Hint – you may need to refresh your memory of solubility rules from unit 4.)
 - a. Lead (II) nitrate and hydrochloric acid
 - b. Silver nitrate and lithium hydroxide
 - c. Copper (II) sulfate and potassium carbonate
- 2. $Ca_3(PO_4)_2$ has a solubility of 7.1 x 10^{-7} M in pure water.
 - a. Write the equation for the dissolution of calcium phosphate in water.
 - b. Write the solubility product expression.

3.

C	2.	Calculate the K _{sp} value for calcium phosphate.	1.8 x 10 ⁻²⁹
The H	K _{sp}	of BaF ₂ is 1.7 x 10 ⁻⁶ .	
a	э.	What is its solubility in moles per liter?	0.0075 M
t).	Grams per liter?	1.3 g/L

- 4. Silver chloride has a larger K_{sp} than silver carbonate ($K_{sp} = 1.8 \times 10^{-10}$ and 8.1×10^{-12} respectively). Does this mean that AgCl has a larger molar solubility than Ag₂CO₃? Explain.
- 5. *Optional challenge* A volume of 75 mL of 0.060 M NaF is mixed with 25 mL of 0.15 M Sr(NO₃)₂. Calculate the concentrations in the final solution of NO₃⁻, Na⁺, Sr²⁺, and F⁻. (K_{sp} for SrF₂ = 2.0 x 10⁻¹⁰) (Ignore any common ion effect) 0.076 M, 0.045 M, 0.015 M, 7.4 x 10⁻⁴ M
- 6. The K_{sp} of calcium carbonate is 4.9×10^{-9} . Calculate the solubility of calcium carbonate in 0.010 M sodium carbonate solution. $4.9 \times 10^{-7} M$
- 7. CrO_4^{2-} is added to a solution in which the original concentration of Sr^{2+} is 1.0×10^{-3} M. Assuming the concentration of Sr^{2+} stays constant, will a precipitate of $SrCrO_4$ ($K_{sp} = 3.6 \times 10^{-5}$) form when [CrO_4^{2-}] = 3.0×10^{-5} M?
- 8. A solution contains 1.0×10^{-4} M Pb²⁺ and 2.0×10^{-3} M Sr²⁺. If a source of SO₄²⁻ is added to this solution, will PbSO₄ (K_{sp} = 6.3 x 10⁻⁷) or SrSO₄ (K_{sp} = 3.4 x 10⁻⁷) precipitate first? Specify the concentration of SO₄²⁻ necessary to begin precipitation of each salt.

$$[SO_4^{2-}] = 6.3 \times 10^{-3} M$$
 for PbSO₄; $[SO_4^{2-}] = 1.7 \times 10^{-4} M$ for SrSO₄