When Responding to the AP Chemistry Free Response Questions:

Write This	Not That!	Rationale
Generally		
Answer the specific question first,	Burying the answer in the text of	Make it easy to give you points
then "justify", "explain" etc.	the response	
Answers that are concise and direct	Burying the answer in a long	Make it easy to give you points
	response	
Names of specific elements and	"it"	Ambiguous
compounds, "reactants", "products",		
etc.		
"Species"	"It", "stuff", etc.	Be formal in language
A justification or explanation when it	Only the answer without	to earn point
is part of the question	supporting it	Pa specific
mass ⁻ , ^v volume ⁻ , etc.	Size	Be specific Required to earn point
when prompted to "explain how the	data without specifically citing	Required to early point
data " or something similar	provided data or trials	
Net ionic equations only containing	Aqueous ionic compounds in their	Including these is not a net ionic,
species that change	undissociated form, spectator ions	it's a molecular or complete ionic
Polyatomic ions that are shown as a	Polyatomic ions that are broken	Polyatomic ions themselves do
compound with the correct charge in	down into elemental ions in	not dissociate in solution, they
solution	solution	in an ionic compound
Particle view diagrams with ions and	Incorrectly oriented dipoles	Drawings must demonstrate
polar molecules orientated in the		understanding of interactions at
correct direction relative to each		(ref. 2015 #4)
other		
An answer with units if "include	An answer without units	It "include units" is written in the
units" is stated in the problem		full points
Show all work used to derive an	An answer without supporting	Work is often what earns some/all
answer and include units in the work	work shown	of the points
Answers expressed to the correct	Answers with an incorrect number	l pt traditionally is assessed
number of significant figures, based	of significant figures or significant	significant figures.
on data given in the problem	constants atc	
Answers that only refer to	Answers with justifications based	Do not suggest the presence of a
substances/data included in the	on situations or data that are not	catalyst, student errors in lab
prompt	indicated in the prompt	questions that are not mentioned,
		prompt
Answers that refer to specific and	Answers that use incorrect	Glassware has different
correct glassware	glassware for the task, particularly	specialized uses, and should be
	with regard to precision	based on the task
Abbreviations that are generally	Abbreviations that are not	Abbreviations still must convey
accepted (M, min, s, IMF, LDF, etc.)	generally accepted (m for min,	the correct information; if in
	mol for molecule, etc)	ambiguity in an answer by using
~		an abbreviation
Gases		
Components of the Kinetic	Ideal gas law for molecular level	arguments based on $PV = nRT$ are at the bulk level and not the
for changes at the molecular level	Justification	molecular level
for changes at the molecular level		(ref. 2013 #5)

Data given in the problem Temperature in "C Gas equations typically require temperature in K There are more collisions with sufficient force between particles There are more collisions Collisions must ocur AND must have enough energy to exercome activation energy (ref. 2017 #bb) An increase in temperature increases the kinetic energy of the substances, tool increasing the number of collisions and the likelyhood that collisions and the likelyhood that collisions will react Temperature is a catalyst that speeds up the reaction. Thermodynamically favorable", "thermodynamically favorable", "thermodynamically favorable", "thermodynamically favorable", "Spontaneous" Preferred AP language Walues with correct signs Values with incorrect signs Necessary for correct calculations and determinations – watch signs based on boods breakingforming, bear flow in caloritery indicated by temperature indication of Hess' Law, etc. AH°=Z(enthalpies of bonds formed) when calculating AH° _{rea} from bond energies AH° _{rea} = AH _{grodecs} – AH _{grodecs} – AH _{grodecs} in nomber of gaseous products (ref. 2017 #2b) Reference number of molecules and phases when justifying a change in publicy in terms of both enthalpy and entropy At a thermodynamic favorability discussion referencing only emitting and entropy Values with units that match correct orientation." Values of k with units that match correct orientation." Constant san part of in included A rate law without their spreased. M sand tara the same unit thoroghout the equation.	R with the correct units to match the	An incorrect value of R	R has different values based on units
There are more collisions with sufficient force between particles There are more collisions Collisions must occur AND must have enough energy to overcome activation energy (ref. 2017 #Lb) An increase in temperature increases the kinetic energy of the substances, the kinetic energy of the substances, tool increasing the number of collisions and the likelyhood that collisions will react Temperature is a catalyst that speeds up the reaction. "Thermodynamically favorable", "thermodynamic for the substance on book breaking forming. Law, etc. AH="-2(enthalpies of bonds formed) when calculating AH= _{rac} from bond energies AH="non = CAH_protects - AH_executes you have a calculating AH= _{rac} (ref. 2017 #2b) Reference number of molecules and phases when justifying a change in justification or "similar structures," or no justification or multipy discussion references to "similar structures," or no multipor entropy. An increase in AS is due to an increase in number of agaeous products (ref. 2017 #2b) Values with units that match constants and that are the same throughout the equation that are the same throughout the equation for both entilapy and entropy. Values of k with units that functions and the same unit through an equation, for both constants and variables. Value of k with units Value of	Temperature in K	Temperature in °C	Gas equations typically require
An increase in temperature increases the kinetic energy of the substances, both increasing the number of collisions and the likelyhood that collisions will have enough energy to overcome E _a and will react Temperature is not a catalyst (ref. 2017 #1bi) Collisions will have enough energy to overcome E _a and will react "Spontaneous" Preferred AP language Thermodynamically feasible" Values with incorrect signs Necessary for correct calculations and determinations – watch signs based on bonds breaking formula, beak flow in calorimetry indicated by temperature sign for the calculating $\Delta H^o_{na} = \Delta H_{podets} - \Delta H_{exectants}$ when calculating ΔH^o_{na} from bond energies Necessary for correct calculations of Hess Taw, etc. 2017 #2b) Reference number of molecules and phases when justifying a change in justification Making vague references to "similar structures" or no phases when justifying a change in justification in through an equation, for both constants and that are the same throughout the equation for both add add set of k with units that match constants and that are the same throughout the equation for the reaction f	There are more collisions with sufficient force between particles with greater kinetic energy	There are more collisions	Collisions must occur AND must have enough energy to overcome activation energy (ref. 2017 #1bi)
Thermodynamics "Spontaneous" Preferred AP language "thermodynamically faosable" "Spontaneous" Preferred AP language Values with correct signs Values with incorrect signs Necessary for correct calculations and determinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/forming, heat flow in calorinations – watch signs based on boads breaking/formula will give an incorrect sign for the AH° _{rea} (ref. 2017 #2b) Reference number of molecules and phases when justifying a change in plustification in unber of gaseous products (ref. 2017 #2c) An increase in ΔS is due to an increase in AS is due to an increase in AS is due to an increase in AS is due to an increase in through and ic favorability discussion referencing only enthalpy or entropy Thermodynamic favorability discussion referencing only enthalpy or entropy Values with units that match constants and that are the same throughout the equation Value of k without units Values of k without units Specific parts of the molecules that through an equation, for both constants and that are the same in included A rate law that includes products AP wants more specific answ	An increase in temperature increases the kinetic energy of the substances, both increasing the number of collisions and the likelyhood that collisions will have enough energy to overcome E_a and will react	Temperature is a catalyst that speeds up the reaction.	Temperature is not a catalyst (ref. 2017 #1bi)
"Thermodynamically favorable", "Spontaneous" Preferred AP language "thermodynamically feasible", "Spontaneous" Preferred AP language Values with correct signs Values with incorrect signs Necessary for correct calculations and determinations – watch signs based on bonds breaking/forming, heat flow in calcorimetry indicated by temperature changes, signs that may change in application of Hess" Law, etc. ΔH ⁰ =Σ(enthalpies of bonds broken) ΔH ⁰ exa = ΔH _{prodects} – ΔH _{tractants} when calculating ΔH ⁰ ran from bond energies Applying the wrong formula will give an incorrect sign for the ΔB ⁰ cal (ref. 2017 #2b) Reference number of molecules and phases when justifying a change in QSB based on a reaction Making vague references to increase in AS is due to an increase in AS is due to an t	Thermodynamics		
Values with correct signs Values with incorrect signs Near advaluations – watch signs and determinations – watch signs hased on bonds breaking/forming, heat flow in calorinations – watch signs based on bonds breaking/forming. The products of bonds formed) when calculating ΔH ^o ran = ΔH _{products} – ΔH _{matcanats} when calculating ΔH ^o ran from bond energies Att ^{op} = ΔH _{products} – ΔH _{matcanats} and determinations – watch signs that may change in application of Hess* Law, etc. ΔH ^o -Σ(enthalpies of bonds formed) when calculating ΔH ^o ran from bond energies Att ^{op} = ΔH _{products} – ΔH _{matcanats} when calculating ΔH ^o ran from bond energies An increase in AS is due to an increase in AS is due to an increase in AS is due to an increase in the same structures" or no justification An increase in AS is due to an increase in AS is due to an increase in the same structures" or no justification An increase in AS is due to an increase in AS is due to an increase in AS is due to an increase in the same unit discussion referencing only discussion referencing only discussion referencing only entropy Values with units that match watch other values/constants Values must be the same unit throughout the equation. Kinetics Value of k without units Units required to earn point Value of k without units Values more specific answer Yate law that includes the rate constant k as part of it A rate law without k being included Incomplete rate law if k is not included A rate law based only on reactants K with units K with units K is a unitless constant Preceeds" "reduce the stress", or "due to Le Châtelier's Principle" Frefered A	"Thermodynamically favorable", "thermodynamically feasible"	"Spontaneous"	Preferred AP language
$ \begin{array}{l c c c c c c c c c c c c c c c c c c c$	Values with correct signs	Values with incorrect signs	Necessary for correct calculations and determinations – watch signs based on bonds breaking/forming, heat flow in calorimetry indicated by temperature changes, signs that may change in application of Hess' Law, etc.
Reference number of molecules and phases when justifying a change in ΔS based on a reactionMaking vague references to "similar structures" or no justificationAn increase in ΔS is due to an increase in number of gaseous products (ref. 2017 #2c)Justify thermodynamic favorability in terms of both enthalpy and entropyA thermodynamic favorability discussion referencing only enthalpy or entropyThermodynamic favorability depends on both ΔH and ΔSValues with units that match constants and that are the same throughout the equationValues with units that do not match other values/constantsValues must be the same unit through an equation, for both constants and variablesKineticsValue of k with unitsUnits required to earn pointSpecific parts of the molecules that must collide in order for the reaction to occur"Collision must occur in the correct orientation"AP wants more specific answerA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedK without unitsK with unitsK is a unitless constantEquilibrium"reduce the stress", or "due to Le been established (i.e. a precipitat has not yet been formed when evaluating K _{sp})Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitat has not yet been formed when evaluating K _{sp})Solids and liquids are not includedKorp expressions that only contain the in onsK-p expressions that contain or includedSolids and liquids are not included	$ \Delta H^{\circ} = \Sigma (enthalpies of bonds broken) -\Sigma (enthalpies of bonds formed) when calculating \Delta H^{\circ}_{rxn} from bondenergies$	$\Delta H^{\circ}_{rxn} = \Delta H_{products} - \Delta H_{reactants}$ when calculating ΔH°_{rxn} from bond energies	Applying the wrong formula will give an incorrect sign for the ΔH^{o}_{rxn} (ref. 2017 #2b)
Justify thermodynamic favorability in terms of both enthalpy and entropyA thermodynamic favorability discussion referencing only enthalpy or entropyThermodynamic favorability depends on both ΔH and ΔSValues with units that match constants and that are the same throughout the equationValues with units that do not match other values/constantsThermodynamic favorability depends on both ΔH and ΔSKineticsValues with units that do not match other values/constantsValues must be the same unit through an equation, for both constants and variablesKineticsValue of k with unitsUnits required to earn pointSpecific parts of the molecules that must collide in order for the reaction to occur"Collision must occur in the correct orientation"AP wants more specific answerA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedK without unitsK with unitsK with unitsK is a unitless constantEquilibrium"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K _{sp} If equilibrium is not yet establishedKsp expressions that only contain the ionsKsp expressions that contain or imply a species in the denominatorSolids and liquids are not included in equilibrium expressions	Reference number of molecules and phases when justifying a change in ΔS based on a reaction	Making vague references to "similar structures" or no justification	An increase in ΔS is due to an increase in number of gaseous products (ref. 2017 #2c)
Values with units that match constants and that are the same throughout the equationValues with units that do not match other values/constantsValues must be the same unit through an equation, for both constants and variablesKineticsValue of k with unitsValue of k without unitsUnits required to earn pointSpecific parts of the molecules that must collide in order for the reaction to occurValue of k without unitsUnits required to earn pointA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedA rate law based only on reactantsA rate law that includes productsRate laws are based only on reactantsEquilibriumK without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"If equilibrium has not yet established (i.e. a precipitate has not yet been formed when evaluating K_sp)If equilibrium is not yet establishedK_sp expressions that only contain the ionsK_sp expressions that only contain the imply a species in the denominatorSolids and liquids are not included	Justify thermodynamic favorability in terms of both enthalpy and entropy	A thermodynamic favorability discussion referencing only enthalpy or entropy	Thermodynamic favorability depends on both ΔH and ΔS
KineticsValue of k with unitsUnits required to earn pointValue of k with unitsValue of k without unitsUnits required to earn pointSpecific parts of the molecules that must collide in order for the reaction to occur"Collision must occur in the correct orientation"AP wants more specific answerA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedA rate law based only on reactantsA rate law that includes productsRate laws are based only on reactantsEquilibriumK without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet 	Values with units that match constants and that are the same throughout the equation	Values with units that do not match other values/constants	Values must be the same unit through an equation, for both constants and variables
Value of k with unitsValue of k without unitsUnits required to earn pointSpecific parts of the molecules that must collide in order for the reaction to occur"Collision must occur in the correct orientation"AP wants more specific answerA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedA rate law based only on reactantsA rate law that includes productsRate laws are based only on reactantsEquilibriumK without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_sp)If equilibrium is not yet 	Kinetics		
Specific parts of the molecules that must collide in order for the reaction to occur"Collision must occur in the correct orientation"AP wants more specific answerA rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedA rate law based only on reactantsA rate law that includes productsRate laws are based only on reactantsEquilibrium K without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K _{sp})If equilibrium is not yet establishedK_sp expressions that only contain the ionsK_sp expressions that only contain the imply a species in the denominatorSolids and liquids are not included	Value of k with units	Value of k without units	Units required to earn point
A rate law that includes the rate constant k as part of itA rate law without k being includedIncomplete rate law if k is not includedA rate law based only on reactantsA rate law that includes productsRate laws are based only on reactantsEquilibriumKK with unitsK is a unitless constantK without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_sp)If equilibrium is not yet establishedK_sp expressions that only contain the ionsK_sp expressions that only contain the imply a species in the denominatorSolids and liquids are not included in equilibrium expressions	Specific parts of the molecules that must collide in order for the reaction to occur	"Collision must occur in the correct orientation"	AP wants more specific answer
A rate law based only on reactants A rate law that includes products Rate laws are based only on reactants Equilibrium K K with units K is a unitless constant K without units K with units K is a unitless constant Discussion of Q vs. K "reduce the stress", or "due to Le Châtelier's Principle" Preferred AP language "Proceeds" "Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K _{sp}) If equilibrium is not yet established K _{sp} expressions that only contain the ions K _{sp} expressions that only contain the K _{sp} expressions that contain or imply a species in the denominator Solids and liquids are not included in equilibrium expressions	A rate law that includes the rate constant k as part of it	A rate law without k being included	Incomplete rate law if k is not included
EquilibriumK with unitsK is a unitless constantK without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K _{sp})If equilibrium is not yet established, then it cannot "shift" – rxn will proceed in a certain 	A rate law based only on reactants	A rate law that includes products	Rate laws are based only on reactants
K without unitsK with unitsK is a unitless constantDiscussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_sp)If equilibrium is not yet establishedK_sp expressions that only contain the ionsK_sp expressions that only contain the imply a species in the denominatorSolids and liquids are not included in equilibrium expressions	Equilibrium		
Discussion of Q vs. K"reduce the stress", or "due to Le Châtelier's Principle"Preferred AP language"Proceeds""Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_sp)If equilibrium is not yet established, then it cannot "shift" – rxn will proceed in a certain direction until equilibrium is establishedK_sp expressions that only contain the ionsK_sp expressions that contain or imply a species in the denominatorSolids and liquids are not included in equilibrium expressions	K without units	K with units	K is a unitless constant
"Proceeds" "Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K _{sp}) If equilibrium is not yet established, then it cannot "shift" – rxn will proceed in a certain direction until equilibrium is established K _{sp} expressions that only contain the ions K _{sp} expressions that contain or imply a species in the denominator Solids and liquids are not included in equilibrium expressions	Discussion of Q vs. K	"reduce the stress", or "due to Le Châtelier's Principle"	Preferred AP language
ions in equilibrium expressions that contain of in equilibrium expressions	"Proceeds"	"Shift" – if equilibrium has not yet been established (i.e. a precipitate has not yet been formed when evaluating K_{sp})	If equilibrium is not yet established, then it cannot "shift" – rxn will proceed in a certain direction until equilibrium is established Solids and liquids are not included
	ions	imply a species in the denominator	in equilibrium expressions

Correct formulas (including charges!) for all species in equilibrium expressions	Substitutions, abbreviations, chargeless ions, other shorthand that may work out in calculations but does not represent the correct species	Equilibrium expressions must be written formally when requested
In K _p expressions: P _{species}	In K _p expressions: [species]	Concentration is not used in K _p , partial pressures are
"x has been assumed to be so small relative to the original concentrations that it can be ignored"	Nothing about why you ignore x to avoid quadratics	Show you understand why you are making the decision
"K is greater than 1, indicating that the products are present in a higher concentration and therefore equilibrium lies to the right"	"K is large"	Use specific values to demonstrate understanding about the meaning of K relative to the equilibrium position (ref. 2017 #2d)
Use an ICE table to determine equilibrium concentrations and plug in to solve for K	Use initial concentrations to solve for K	K must be used with equilibrium concentrations, not initial concentrations
Acids and Bases		
"The pH > 7 because the salt produced in the neutralization behaves as a base: $A^- + H_2O \xrightarrow{\sim} HA$ + OH-"	"The pH $>$ 7 because it's a battle between weak acid and strong base and strong base wins."	State the actual reason not the memory aid
"The solution is neutral when [H ₃ O ⁺] = [OH ⁻]."	"The solution is neutral when pH=7."	True definition of neutral – neutral is only pH of 7 when $K_w = 1.0 x$ 10^{-14} (at 298 K)
$K_w = K_a x K_b$ for a conjugate pair	$K_w = K_a \times K_b$ for an unrelated acid/base pair	This equation only holds true for conjugate acid-base pairs
A buffer system containing a weak acid and its conjugate base (or a weak base and its conjugate acid)	A buffer system that contains a strong acid or base; a buffer containing any acid/base with a common ion	A buffer results from the presence of a weak acid or base and its conjugate; a strong-strong system will neutralize without buffering
"This buffer has a higher buffering capacity because it contains a higher concentration of weak acid/base and its conjugate to react with added H ⁺ or OH ⁻ ions."	"Higher volume of weak acid/base"	Buffering capacity is related to the presence of both the weak species and its conjugate.
Atomic Structure		
"Effective nuclear charge increases"	"It wants to have a full octet"; "it's close to having a full octet"	State the actual reason not the memory aid
"It has a more polarizable cloud of electrons"	"It has more electrons", "it has more mass", "it has more surface area", "it is bigger", "it has more protons"	State the actual reason not the memory aid
"period"	"shell" when referring to elements and their location on the Periodic Table	Elements are in a period, electrons are in a shell
Reference reasons for periodic trends (i.e. effective nuclear charge, coulomb's law, polarizability, etc.)	Stating the trend as the reason ("because it is to the left", "because it is further down the periodic table", etc.)	State the actual reason not the memory aid
"Electrons in higher energy levels are farther from the nucleus, resulting in a larger atom/ion."	"More electrons/more energy levels makes the atom/ion bigger."	Explanation of reason, not just statement of fact, required for point (Ref 2016 #1)
Ion electron configurations that show electrons were removed from valence shell orbitals	Ion electron configurations that show electrons were removed from inner orbitals	from the outermost shell; this may or may not be the electrons that

	were filled last in the electron
	configuration

Bonding and Intermolecular Forces		
"Overcome intermolecular forces"	"break up" a solid/liquid, break covalent bonds	IMFs should be used to justify phase changes
"Stronger intermolecular forces increase boiling point"	"Stronger covalent bonds increase boiling point"	IMF's, not bonds, are what are overcome during phase changes
Ion interactions	LDF's when discussing ionic compounds	Ionic compounds have ions with whole charges, which dominate interactions
"Coulombic attraction"	"Opposites attract"	State the actual reason not the memory aid
Describe the process of overcoming intermolecular forces/polarity	"Like dissolves like"	State the actual reason not the memory aid
"Has hydrogen bonds between the molecules"	"Has hydrogen bonds"	Shows that you understand hydrogen bonds are not actually bonds
"ionic compound"	"molecule" when discussing an ionic compound	A molecule is a covalent compound
"ions"	"atoms" when discussing ionic compounds	Ionic compounds contain ions
"atoms"	"ions" when discussing covalent compounds	Covalent compounds do not contain ions
Lewis structures that are complete with necessary lone pairs and/or resonance	Lewis structures that are missing lone pairs and/or resonance (if needed for correct structures)	Lewis structures are incorrect without necessary lone pairs
Identify specific intermolecular forces at play	"stronger intermolecular forces"	Shows your understanding of the chemistry at play
LDFs increase within an increasing number of electrons and therefore polarizability	LDFs increase with increasing size/mass	Increased number of electrons in an atom is what actually increases the LDF; increased size usually parallels this but is not the reason for increased strength of LDF
Multiple bonds when there are not enough valence electrons to satisfy the octet rule	Multiple bonds when the octet rule for the structure would have been satisfied without them	Multiple bonds are only needed when there are not enough valence electrons to satisfy the octet rule
Hydrogen bonding, dipole-dipole, London dispersion forces, etc. when asked to identify intermolecular forces	Ionic bonds, covalent bonds, metallic bonds when asked to identify intermolecular forces	Intermolecular forces are attractions between molecules; bonds are intramolecular forces (within molecules)
Comparison of R _f values in chromatography	Comparison of absolute height of spots on chromatograms	It is important to take into account a difference in the distance the solvent front travelled between different chromatograms (ref. 2017 #4)
Discussion of intermolecular forces between analyte molecules and stationary/mobile phases	Repulsions between analyte molecules and stationary/mobile phases	The movement in chromatography is determined by the attraction for the stationary/mobile phase (ref 2017 #4)
Electrochemistry		
Loss of mass of electrode is due to atoms of electrode going into solution as ions	Loss of mass of electrode is due to loss of electrons	Electrons have extremely small (negligible in this case) mass (ref. 2014 #3)
Discussion of Q vs. K for changes in cell potential after a change, or	Discussion of Le Châtelier's principle	Preferred AP language (ref. 2014 #3)

qualitative discussion of Nernst Equation		
An equation that is balanced with respect to both number of atoms and charge	An equation that is unbalanced in atoms, charge or both; an equation that shows electrons	Recognize that equations need to balanced with respect to both atoms and charge – this means that half-reactions may need to multiplied by a coeff to balance charge for the overall reaction, even if atoms are already balanced, and then the electrons on both sides cancel out and are not written
E° value not multiplied by stoichiometric factors	E° value that has been multiplied by a stoichiometric value	E° is intensive and therefore does not change if the half-cell is multiplied by a stoichiometric factor to balance charge
Standard Cell potential when discussing a REDOX reaction	Standard reduction potential when discussing a REDOX reaction	A redox reaction contains both oxidation and reduction; therefore the E° for the reaction is the sum of the standard reduction potentials of both the oxidation and reduction half-reactions
"Ions flow through the salt bridge to maintain a charge balance in each half-cell."	"Electrons flow through the salt bridge to equilibrate charge."	Electrons do not flow through the salt bridge; ions flow through the salt bridge, electrons flow through the wire

Compiled by: Nora Walsh FJ Reitz High School, Evansville, IN

 Sources:
 Review of Released Free-Response Questions with Samples and Commentary

 Adrian Dingle's Blog Posts on Writing Good Answers (https://www.adriandingleschemistrypages.com/)

 AACT Webinar: Teaching Students How to Better Answer Non-Calculator Problems

 AP Teacher Community

 AP Teachers in the National AP Chemistry Teachers Facebook Group

Last updated April 22nd, 2019